期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism
1
作者 Qiongna Xiao Yuyan Jiang +3 位作者 Weiqiang Yuan Jingjing Chen Haohong Li Huidong Zheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期192-201,共10页
Catalytic epoxidation of alkenes is an important type of organic reaction in chemical industry,and the deep insight into catalyst deactivation will help to develop new epoxidation process.In this work,series of quater... Catalytic epoxidation of alkenes is an important type of organic reaction in chemical industry,and the deep insight into catalyst deactivation will help to develop new epoxidation process.In this work,series of quaternary ammoniums bearing different cationic sizes,i.e.MTOA+(methyltrioctylammonium,[(C_(8)H_(17))_(3)CH_(3)N]+),HTMA+(hexadecyltrimethylammonium,[(C_(16)H_(33))(CH_(3))_(3)N]+) and DMDOA+(dimethyldioctadecylammonium,[(C_(18)H_(37))_(2)(CH_(3))_(2)N]+) were incorporated with polyoxometalate (POM) anions to prepare phase transfer catalysts (PTCs),which were used in the styrene epoxidations.Among them,(MTOA)_(3)PW_(4)O_(24)exhibits the best catalytic performance judged from the highest styrene conversion rate(52%) and styrene oxide selectivity (93%),during which the styrene epoxidation conditions were optimized.Meanwhile,the deactivation mechanism of this kind of PTCs was proposed firstly,i.e.in the case of low H_(2)O_(2) content,the oxidant can only be used in the styrene epoxidation,in which the catalyst can transform into stable Keggin-type POM.But when the content of H_(2)O_(2) is higher,the excess H_(2)O_(2) can reactivate the Keggin-type POM into active (PW_(4)O_(24))_(3)-anions,which can trigger the ring-opening polymerization of styrene oxide.Consequently,the catalyst is deactivated by adhered poly(styrene oxide)irreversibly,which was determined by NMR spectra.In this situation,the active moiety{PO_(4)[WO(O_(2))_(2)]_(4)}_(3)-in phase-transfer catalytic system can break into some unidentified species with low W/P ratio with the presence of epoxides.This work will be beneficial for the design of new PTCs in alkene epoxidation in fine chemical industry. 展开更多
关键词 Phosphotungstic acid phase-transfer catalyst Styrene epoxidation catalyst deactivation mechanism Cation size effect
下载PDF
Mechanism of Hg^0 oxidation in the presence of HCl over a commercial V_2O_5–WO_3/TiO_2 SCR catalyst 被引量:7
2
作者 Ruihui Liu Wenqing Xu +1 位作者 Li Tong Tingyu Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第10期76-83,共8页
Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the pres... Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the presence of HCl and O2, and the Hg^0 oxidation efficiencies decreased slowly as the temperature increased from 200 to 400℃. Upon pretreatment with HCl and O2 at 350℃, the catalyst demonstrated higher catalytic activity for Hg^0 oxidation. Notably,the effect of pretreatment with HCl alone was not obvious. For the catalyst treated with HCl and O2, better performance was observed with lower reaction temperatures. The results showed that both HCl and Hg^0 were first adsorbed onto the catalyst and then reacted with O2 following its adsorption, which indicates that the oxidation of Hg^0 over the commercial catalyst followed the Langmuir–Hinshelwood mechanism. Several characterization techniques, including Hg^0temperature-programmed desorption(Hg-TPD) and X-ray photoelectron spectroscopy(XPS), were employed in this work. Hg-TPD profiles showed that weakly adsorbed mercury species were converted to strongly bound species in the presence of HCl and O2. XPS patterns indicated that new chemisorbed oxygen species were formed by the adsorption of HCl, which consequently facilitated the oxidation of mercury. 展开更多
关键词 Mercury Hydrogen chloride Vanadium-based catalyst Oxidation mechanism
原文传递
Interaction between Weibull parameters and mechanical strength reliability of industrial-scale water gas shift catalysts 被引量:1
3
作者 Mozhgan Zakeri Abdolreza Samimi +1 位作者 Mahdi Shafiee Afarani Alireza Salehirad 《Particuology》 SCIE EI CAS CSCD 2017年第3期160-166,共7页
A fundamental step in the production of an industrial catalyst is its crushing strength assessment. Limited literature exists in which the strength reliability of supported catalysts is investigated from production to... A fundamental step in the production of an industrial catalyst is its crushing strength assessment. Limited literature exists in which the strength reliability of supported catalysts is investigated from production to their application in a reactor. In this work, cylindrical supports were prepared by pelletizing high poros- ity γ-alumina powder, and Cu-Znf/γ-Al2O3 catalysts were prepared by impregnation of the pelletized γ-alumina supports with an aqueous solution of copper and zinc nitrates. The support-forming variables, such as binder concentration, compaction pressure, calcination temperature, and drying procedure were investigated. The Weibull method was used to analyze the crushing strength data of the supports, and the fresh and used catalysts before and after the low-temperature water gas shift reaction. Support formation at a 50 wt% binder concentration, 1148 MPa compaction pressure, 500 ℃ calcination temperature, and rapid drying (100 ℃, 8 h) led to the maximum support mechanical reliability. The most reliable catalyst with respect to simultaneous appropriate catalytic performance and mechanical strength was prepared from a support with the lowest mean crushing strength (26.25 MPa). This work illustrates the impor- tance of the Weibull modulus as a useful mechanical reliability index in manufacturing a supported solid catalyst. 展开更多
关键词 Pelletizing Crushing strength Weibull modulus Industrial catalyst Mechanical strength reliability
原文传递
A non-precious metal catalyst for oxygen reduction prepared by heat-treating a mechanical mixture of carbon black,melamine and cobalt chloride 被引量:1
4
作者 Yu-Jun Si Zhong-Ping Xiong +2 位作者 Chang-Guo Chen Ping Liu Hui-Juan Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2013年第12期1109-1111,共3页
A non-precious metal catalyst CoMe]C for the oxygen reduction reaction is prepared by heat-treating a mechanical mixture of carbon black, melamine and cobalt chloride at 600 under nitrogen atmosphere for 2 h. The cata... A non-precious metal catalyst CoMe]C for the oxygen reduction reaction is prepared by heat-treating a mechanical mixture of carbon black, melamine and cobalt chloride at 600 under nitrogen atmosphere for 2 h. The catalytic activity of CoMe/C is characterized by the electrochemical linear sweep voltammetry technique. The onset reduction potential of the catalyst is 0.55 V (vs. SCE) at a scanning rate of 5 mV/s in 0.5 mol/L H2SO4 solution. The formation of the ORR activity sites of CoMe/C is facilitated by metallic β- cobalt. 展开更多
关键词 Oxygen reduction Non-precious metal catalyst Preparation Mechanical method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部