The catalytic hydrogenation of 2-nitro-4-acetylamino anisole(NMA)is a less-polluting and efficient method to produce 2-amino-4-acetamino anisole(AMA).However,the kinetics of catalytic hydrogenation of NMA to AMA remai...The catalytic hydrogenation of 2-nitro-4-acetylamino anisole(NMA)is a less-polluting and efficient method to produce 2-amino-4-acetamino anisole(AMA).However,the kinetics of catalytic hydrogenation of NMA to AMA remains obscure.In this work,the kinetic models including power-law model and Langmuir-Hinshelwood-Hougen-Watson(LHHW)model of NMA hydrogenation to AMA catalyzed by Raney nickel catalyst were investigated.All experiments were carried out under the elimination of mass transfer resistance within the temperature range of 70–100°C and the hydrogen pressure of 0.8–1.5 MPa.The reaction was found to follow 0.52-order kinetics with respect to the NMA concentration and 1.10-order kinetics in terms of hydrogen pressure.Based on the LHHW model,the dual-site dissociation adsorption of hydrogen was analyzed to be the rate determining step.The research of intrinsic kinetics of NMA to AMA provides the guidance for the reactor design and inspires the catalyst modification.展开更多
The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffrac...The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), temperature-programmed desorption of hydrogen (H2-TPD) and activity evaluation, the physico-chemical and catalytic properties of the catalysts were investigated. Among the catalysts tested, the SiO2 supported nickel catalyst showed the highest activity and selectivity towards m-phenylenediamine, over which 97.3% m-dinitrobenzene conversion and 95.1% m-phenylenediamine yield were obtained at 373K under hydrogen pressure of 2.6MPa after reaction for 6 h when using ethanol as solvent. Although TiO2 and diatomite supported nickel catalysts also presented high activity, they had lower selectivity towards m-phenylenediamine. As for γ-Al2O3 and MgO supported catalysts were almost inactive for the object reaction. It was shown that both the activity and selectivity of the catalysts were strongly depended on the interaction between nickel and the support. The higher activities of Ni/SiO2, Ni/TiO2 and Ni/diatomite could be attributed to the weaker metal-support interaction, on which Ni species presented as crystallized Ni metal particles. On the other hand, there existed strong metal-support interaction in Ni/MgO and Ni γ-Al2O3, which causes these catalysts more difficult to be reduced and the availability of Ni active sites decreased, resulting in their low catalytic activity.展开更多
The colloidal carbon microspheres(CMS)were prepared by the hydrothermal method.The nickel catalysts supported on carbon microspheres(Ni/CMS)were further prepared and were characterized by the Fourier transform infrare...The colloidal carbon microspheres(CMS)were prepared by the hydrothermal method.The nickel catalysts supported on carbon microspheres(Ni/CMS)were further prepared and were characterized by the Fourier transform infrared spectroscopy(FTIR),the X-ray diffraction(XRD),the scanning electron microscopy(SEM),the transmission electron microscopy(TEM),and the N_(2)adsorption technique.The selective hydrogenation of maleic anhydride(MA)to succinic anhydride(SA)over the Ni/CMS catalysts was investigated.The results indicated that the Ni/CMS catalyst,which was prepared with glucose as carbon source and calcined at 500℃,exhibited the best performance.The hydrogen pressure,reaction temperature,and reaction time could significantly affect the conversion of maleic anhydride during the hydrogenation reaction.A 98.4%conversion of MA and an 100%selectivity to SA were achieved over the Ni/CMS catalyst in acetic anhydride solvent under mild conditions covering a temperature of 90℃,a H2 pressure of 1.0 MPa,and a reaction time of 3 h.展开更多
An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LO...An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LOHC)storage technology using the quinoline/10HQ pair as H_(2)-lean/H_(2)-rich substrates.An influence of synthesis technique of Ni/Mg/Al catalysts on their properties has been demonstrated.The catalysts were synthesized through coprecipitation of Ni,Mg,Al precursors to obtain layered double hydroxides(LDH)or via syn-thesis of(∼72 wt%)Ni-Al_(2)O_(3) system-also through coprecipitation,followed by modifying with a magnesium-containing precursor.For the catalysts of the first series,the inclusion of magnesium into LDH lattice led to a significant increase in catalytic activity in hydrogen extraction(10HQ dehydrogenation reaction).Despite the decrease in the content of catalytically active nickel,a significant increase in the yield of the dehydrogenation product was observed.This regularity is presumably associated with appearance of basic sites,that accelerates the dehydrogenation reaction.In the case of the second series,activity of pre-reduced(600°C,H_(2))catalysts in dehydrogenation of 10HQ also significantly depends on a MgO content and is maximal at Mg:Ni weight ratio 0.056.Using an in-depth study of structure of the original and reduced catalyst samples(Ni-Al_(2)O_(3) and Ni-MgNiOx-Al_(2)O_(3)),it was shown that this regularity is associated with the increased resistance of catalytically active Ni particles to agglomeration during the reductive activation.Also,using the Ni-MgNiOx-Al_(2)O_(3)catalyst for hydrogen storage process(hydrogenation reaction),the possibility of deep quinoline hydrogenation(up to 10HQ)in a flow-type reactor was demonstrated for the first time.展开更多
A variety of barium sulfate(BaSO4) carriers with or without mesopore structure were synthesized via precipitation reaction in aqueous solution of barium hydroxide and sulfuric acid with ethylene glycol as a modifying ...A variety of barium sulfate(BaSO4) carriers with or without mesopore structure were synthesized via precipitation reaction in aqueous solution of barium hydroxide and sulfuric acid with ethylene glycol as a modifying agent, and then calcined at various temperatures. The obtained BaSO4 was used as catalyst carriers for polystyrene(PS) hydrogenation, and BaSO4 supported palladium(Pd) catalysts with Pd content of 5wt% were prepared by using impregnation method. N2 physisorption, transmission electron microscopy, X-ray diffraction and kinetics studies were used to investigate the effect of carrier structure on the dispersion and geometric location of active metal and their catalytic activities in PS hydrogenation. It was found that the pore structure of carrier played an important role in the dispersion and location of Pd grains. The activation energy values for all the Pd/BaSO4 catalysts were around 49.1kJ/mol, while the pre-exponential factor for Pd/BSC-6H was much higher than others. The Pd/BSC-6H without mesopores had Pd grains deposited on the external surface of the carrier, and exhibited better activity than the mesoporous catalysts. It is indicated that the utilization of Pd/BSC-6H can reduce the pore diffusion of PS coils and enabled more active sites to participate in the PS hydrogenation.展开更多
The influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction was studied.A series of Al2O3-supported Ni catalysts were ...The influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction was studied.A series of Al2O3-supported Ni catalysts were synthesized,with nickel loading of 8 wt%,using the incipient wetness,wet impregnation,and modified equilibrium deposition filtration methods.The catalysts' surface and bulk properties were determined by inductively coupled plasma(ICP),N2 adsorption-desorption isotherms(BET),X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and temperature-programmed reduction(TPR).Used catalysts were characterized by techniques such as elemental analysis and SEM in order to determine the level of carbon that was deposited and catalyst morphology.The results indicated that the synthesis method affected the textural,structural and surface properties of the catalysts,differentiating the dispersion and the kind of nickel species on alumina's surface.The formation of nickel aluminate phases was confirmed by the XRD and TPR analysis and the β-peak of the Ni/Al-edf catalyst was higher than in the other two catalysts,indicating that the nickel aluminate species of this catalyst were more reducible.Both Ni/Al-wet and Ni/Al-edf catalysts showed increasing CO2 selectivities and approximately constant CO selectivities for temperatures above 550℃,indicating that these catalysts successfully catalyze the water gas shift reaction.It was also confirmed that the Ni/Al-edf catalyst had the highest values for glycerol to gaseous products conversion,hydrogen yield,allyl alcohol,acetaldehyde,and acetic acid selectivities at 650℃ and the lowest carbon deposition of the catalysts tested.The correlation of the catalysts' structural properties,dispersion and reducibility with catalytic performance reveals that the EDF method can provide catalysts with higher specific surface area and active phase's dispersion,that are easier to reduce,more active and selective to hydrogen production,and more resistant to carbon deposition.展开更多
A novel K2O and La2O3 promoted nickel catalyst supported on a-Al2O3 was prepared by co-impregnation method, and it exhibited higher activity and 6-aminocapronitrile selectivity than Ni/a-Al2O3 during the hydrogenation...A novel K2O and La2O3 promoted nickel catalyst supported on a-Al2O3 was prepared by co-impregnation method, and it exhibited higher activity and 6-aminocapronitrile selectivity than Ni/a-Al2O3 during the hydrogenation of adiponitrile in the absence of ammonia, i.e., K2O and La2O3 improved the performance of the nickel-based catalyst.展开更多
Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach t...Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach to enhance its catalytic performance in acetylene hydrogenation.In this work,SiO2‐supported Au‐Ni bimetallic catalysts were synthesized and investigated in the selective hydrogenation of acetylene.The Au‐Ni bimetallic catalysts exhibited much higher catalytic performance than that of the corresponding monometallic Au or Ni catalysts.By tuning the reduction temperature and/or Ni loading,we obtained an Au‐Ni/SiO2catalyst with optimal performance.The results of transmission electron microscopy imaging revealed that the Au‐Ni bimetallic particles were highly dispersed on the SiO2support.Meanwhile,analysis of the bimetallic catalyst by energy‐dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy demonstrated the formation of Au‐Ni alloy,which contributed to the synergistic effect between Au and Ni in the hydrogenation of acetylene.展开更多
The intermittent nature of renewable resources requires for most applications the development of efficient and cost-effective technologies for steady supply of electrical energy.The storage of energy in the form of hy...The intermittent nature of renewable resources requires for most applications the development of efficient and cost-effective technologies for steady supply of electrical energy.The storage of energy in the form of hydrogen chemically bound within organic molecules(rather than physically as compressed gas or cooled liquid)represents an alternative approach that is attracting great research interest.Compared to other liquid organic hydrogen carriers(LOHCs),dimethyl ether(DME)appears to have the largest potential impact on society,especially if inserted in technological chains of CO_(2) sequestration and utilization,so to determine an effective mitigation of environmental issues,without any net effect on the carbon footprint.Specifically,the steps of H2 storage and H2 release can take place in two coupled chemical processes,constituted by the exothermic synthesis of DME via CO_(2) hydrogenation and the endothermic steam reforming of DME,respectively.Herein,the latest advances in the development of heterogeneous bifunctional and hybrid catalysts for the direct hydrogenation of CO_(2) to DME are thoroughly reviewed,with special emphasis on thermodynamics,catalyst design and process feasibility.Despite many aspects behind the mechanism of DME synthesis from H2-CO_(2) streams are still to be uncovered,the recent progress in the research on H2 release by DME steam reforming is increasing the interest for effectively closing this binary H2 loop,in view of future green deals and sustainable research developments.展开更多
A novel lanthana-promoted nickel catalyst supported on silica for the liquid phase hydrogenation of m-dinitrobenzene to m-phenylenediamine was prepared by an incipient wetness sequential impregnation method. It was ...A novel lanthana-promoted nickel catalyst supported on silica for the liquid phase hydrogenation of m-dinitrobenzene to m-phenylenediamine was prepared by an incipient wetness sequential impregnation method. It was found that Ni-La/SiO2 catalyst exhibited high activity and stability for m-dinitrobenzene hydrogenation. Over this catalyst, the conversion of m-dinitrobenzene and the yield of m-phenylenediamine were up to 97.1% and 93.5%, respectively, at 373 K and 2.6 MPa hydrogen pressure after reaction for 1 h.展开更多
A sinter-locked three-dimensional network of microfibrous nickel catalyst has been fabricated based on wet layup papermaking and sintering processes and this novel approach permits the production of -11 W fuel cell po...A sinter-locked three-dimensional network of microfibrous nickel catalyst has been fabricated based on wet layup papermaking and sintering processes and this novel approach permits the production of -11 W fuel cell power H2 via NH3 decomposition with a conversion of 97% at 750 ℃ in a bed of 0.6 cm^3.展开更多
Highly active and stable nickel catalyst for dehydrogenation of methane and hydrogenation of benzene is prepared from a precursor with hydrotalcite-like anionic clam structure by coprecipitation. The nickel particles ...Highly active and stable nickel catalyst for dehydrogenation of methane and hydrogenation of benzene is prepared from a precursor with hydrotalcite-like anionic clam structure by coprecipitation. The nickel particles have a narrow size distribution in several nanometers, and have a strong interaction with other components such as Al2O3. This catalyst is highly sensitive to further modification by doping and to reaction condition. On a modified catalyst, benzene hydrogenation to cyclohexane proceeds to complete at 373 K. While on another catalyst, different structured nanocarbons are obtained at moderate temperatures. It is found that the thioresistance of the nickel catalyst in hydrogenation can be improved by doping.展开更多
Selective hydrogenation over earth-abundant metal catalysts is challenging but particularly valuable for practical applications in heterogeneous catalysis.Herein,we demonstrate that the catalytic selectivity of the co...Selective hydrogenation over earth-abundant metal catalysts is challenging but particularly valuable for practical applications in heterogeneous catalysis.Herein,we demonstrate that the catalytic selectivity of the commercial Raney nickel catalyst can be greatly tuned by modulation of the nickel surface by silica.Using quinoline hydrogenation as a model,we show that the silica-modified Raney nickel catalysts exhibit good activity,excellent selectivity,and long stability,whereas the undesired over-hydrogenation reactions are effectively hindered.In contrast,the pristine Raney nickel catalyst shows inferior selectivity for the targeted product.Mechanistic studies confirm a positive role of silica to facilitate the desorption of 1,2,3,4-tetrahydroquinoline from the catalyst surface,thus enhancing the product selectivity.展开更多
The nickel-promoted Cu-containing catalysts (CuxNiy-MgAlO) for furfural (FFR) hydrogenation were prepared from the hydrotalcite-like precursors, and characterized by X-ray powder diffraction, inductively-coupled p...The nickel-promoted Cu-containing catalysts (CuxNiy-MgAlO) for furfural (FFR) hydrogenation were prepared from the hydrotalcite-like precursors, and characterized by X-ray powder diffraction, inductively-coupled plasma atomic emission spectroscopy, N2 adsorption-desorption, UV-Vis diffuse reflectance spectra and temperatureprogrammed reduction with H2 in the present work. The obtained catalysts were observed to exhibit a better catalytic property than the corresponding Cu-MgAlO or Ni-MgAlO samples in FFR hydrogenation, and the CuNi-MgAIO catalyst with the actual Cu and Ni loadings of 12.5 wt% and 4.5 wt%, respectively, could give the highest FFR conversion (93.2%) and furfuryl alcohol selectivity (89.2%). At the same time, Cu~ species from the reduction of Cu2+ ions in spinel phases were deduced to be more active for FFR hydrogenation.展开更多
Co/NC catalysts modified with rare earth elements(La,Ce,Pr)were prepared by pyrolysis of rare earth elements doped ZIF-67.The experimental results show that the modification of rare earth elements significantly improv...Co/NC catalysts modified with rare earth elements(La,Ce,Pr)were prepared by pyrolysis of rare earth elements doped ZIF-67.The experimental results show that the modification of rare earth elements significantly improves the ammonia decomposition activity and stability of the Co/NC catalyst.The La-Co/NC catalyst can achieve an 82.3%ammonia decomposition and 18.4 mmol hydrogen production rate at 550℃with a GHSV of 20000 cm^(3)·h^(-1).Furthermore,no obvious performance degradation is observed after 72 hours of reaction for all rare earth elements modified catalysts.It is shown that the modification of rare earth elements significantly improves the surface alkalinity and surface chemical state of the catalyst,and thus improves the ammonia decomposition activity of the catalyst.A new type of high-performance ammonia decomposition Co-based catalyst is proposed,and the promoting effect of rare earth elements on the activity of ammonia decomposition is revealed.展开更多
Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the mo...Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the most promising solutions for providing hydrogen fuel.Nickel iron bimetallic electrocatalysts have abundant sources,low cost,clean and pollution-free properties,and strong catalytic performance,This article mainly reviews the development and research of bimetallic nickel iron oxides and nickel iron alloys in recent years,and explores their synthesis methods,properties,and stability in depth.展开更多
A Ni-RE-P-Al catalyst prepared by alkaline extraction of a rapidly quenched Ni-RE-P-Al alloy was characterized by means of ICP, BET, XRD, XPS and TEM. The results show that the rapidly quenched Ni-RE-P-Al alloy conta...A Ni-RE-P-Al catalyst prepared by alkaline extraction of a rapidly quenched Ni-RE-P-Al alloy was characterized by means of ICP, BET, XRD, XPS and TEM. The results show that the rapidly quenched Ni-RE-P-Al alloy contained less crystalline Al_3Ni than Al-Ni alloy. After alkaline extraction, most of Al in the Ni-RE-P-Al alloy was leached out and the resulted Ni-RE-P-Al catalyst presented a sponge structure similar to Raney Ni. Although crystalline Ni is the major phase in the Ni-RE-P-Al catalyst and Raney Ni, amorphous Ni-P phase has been detected in the Ni-RE-P-Al catalyst. Studies on catalytic hydrogenation of toluene, phenyl ethylene, acetylene benzene, nitrobenzene, cyclohexanone and adiponitrile in liquid phase showed that the activity and selectivity of this Ni-RE-P-Al catalyst are superior to those of Raney Ni, especially at low temperatures. The amorphous phase is considered to be responsible for its superior catalytic properties.展开更多
In order to investigate the effect of nickel phosphide nanoparticles’ (Ni-P NPs) crystallization on hydrogen evolution reaction (HER) catalytic performance, amorphous Ni-P NPs and crystalline Ni12P5 were synt...In order to investigate the effect of nickel phosphide nanoparticles’ (Ni-P NPs) crystallization on hydrogen evolution reaction (HER) catalytic performance, amorphous Ni-P NPs and crystalline Ni12P5 were synthesized by a simple and low-cost autocatalytic reduction method and heat treatment process. The result of electrochemical tests shows that crystalline Ni12P5 has much higher HER catalytic activity than the amorphous one. X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy revealed that Ni?P bond formed during crystallization, making Ni positively charged and P negatively charged. This charged nature of Ni12P5 is similar to [NiFe] hydrogenase and its analogous, which make the removal of H2 less energy-cost.展开更多
基金the National Natural Science Foun-dation of China(22022802 and 22288102).
文摘The catalytic hydrogenation of 2-nitro-4-acetylamino anisole(NMA)is a less-polluting and efficient method to produce 2-amino-4-acetamino anisole(AMA).However,the kinetics of catalytic hydrogenation of NMA to AMA remains obscure.In this work,the kinetic models including power-law model and Langmuir-Hinshelwood-Hougen-Watson(LHHW)model of NMA hydrogenation to AMA catalyzed by Raney nickel catalyst were investigated.All experiments were carried out under the elimination of mass transfer resistance within the temperature range of 70–100°C and the hydrogen pressure of 0.8–1.5 MPa.The reaction was found to follow 0.52-order kinetics with respect to the NMA concentration and 1.10-order kinetics in terms of hydrogen pressure.Based on the LHHW model,the dual-site dissociation adsorption of hydrogen was analyzed to be the rate determining step.The research of intrinsic kinetics of NMA to AMA provides the guidance for the reactor design and inspires the catalyst modification.
文摘The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), temperature-programmed desorption of hydrogen (H2-TPD) and activity evaluation, the physico-chemical and catalytic properties of the catalysts were investigated. Among the catalysts tested, the SiO2 supported nickel catalyst showed the highest activity and selectivity towards m-phenylenediamine, over which 97.3% m-dinitrobenzene conversion and 95.1% m-phenylenediamine yield were obtained at 373K under hydrogen pressure of 2.6MPa after reaction for 6 h when using ethanol as solvent. Although TiO2 and diatomite supported nickel catalysts also presented high activity, they had lower selectivity towards m-phenylenediamine. As for γ-Al2O3 and MgO supported catalysts were almost inactive for the object reaction. It was shown that both the activity and selectivity of the catalysts were strongly depended on the interaction between nickel and the support. The higher activities of Ni/SiO2, Ni/TiO2 and Ni/diatomite could be attributed to the weaker metal-support interaction, on which Ni species presented as crystallized Ni metal particles. On the other hand, there existed strong metal-support interaction in Ni/MgO and Ni γ-Al2O3, which causes these catalysts more difficult to be reduced and the availability of Ni active sites decreased, resulting in their low catalytic activity.
基金The authors are grateful for the financial supports of the Project of Research and Development Fund of Nanchong City(19YFZJ0107,18YFZJ0041)the Meritocracy Research Funds of China West Normal University(17YC041)the Undergraduate Training Program for Innovation of China West Normal University.(cxcy2020186).
文摘The colloidal carbon microspheres(CMS)were prepared by the hydrothermal method.The nickel catalysts supported on carbon microspheres(Ni/CMS)were further prepared and were characterized by the Fourier transform infrared spectroscopy(FTIR),the X-ray diffraction(XRD),the scanning electron microscopy(SEM),the transmission electron microscopy(TEM),and the N_(2)adsorption technique.The selective hydrogenation of maleic anhydride(MA)to succinic anhydride(SA)over the Ni/CMS catalysts was investigated.The results indicated that the Ni/CMS catalyst,which was prepared with glucose as carbon source and calcined at 500℃,exhibited the best performance.The hydrogen pressure,reaction temperature,and reaction time could significantly affect the conversion of maleic anhydride during the hydrogenation reaction.A 98.4%conversion of MA and an 100%selectivity to SA were achieved over the Ni/CMS catalyst in acetic anhydride solvent under mild conditions covering a temperature of 90℃,a H2 pressure of 1.0 MPa,and a reaction time of 3 h.
基金supported by the Ministry of Science and Higher Education of the Russian Federation within governmental order for Boreskov Institute of Catalysis SB RAS (projects FWUR-2024–0038, FWUR-2024–0032 and FWUR2024–0039)
文摘An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LOHC)storage technology using the quinoline/10HQ pair as H_(2)-lean/H_(2)-rich substrates.An influence of synthesis technique of Ni/Mg/Al catalysts on their properties has been demonstrated.The catalysts were synthesized through coprecipitation of Ni,Mg,Al precursors to obtain layered double hydroxides(LDH)or via syn-thesis of(∼72 wt%)Ni-Al_(2)O_(3) system-also through coprecipitation,followed by modifying with a magnesium-containing precursor.For the catalysts of the first series,the inclusion of magnesium into LDH lattice led to a significant increase in catalytic activity in hydrogen extraction(10HQ dehydrogenation reaction).Despite the decrease in the content of catalytically active nickel,a significant increase in the yield of the dehydrogenation product was observed.This regularity is presumably associated with appearance of basic sites,that accelerates the dehydrogenation reaction.In the case of the second series,activity of pre-reduced(600°C,H_(2))catalysts in dehydrogenation of 10HQ also significantly depends on a MgO content and is maximal at Mg:Ni weight ratio 0.056.Using an in-depth study of structure of the original and reduced catalyst samples(Ni-Al_(2)O_(3) and Ni-MgNiOx-Al_(2)O_(3)),it was shown that this regularity is associated with the increased resistance of catalytically active Ni particles to agglomeration during the reductive activation.Also,using the Ni-MgNiOx-Al_(2)O_(3)catalyst for hydrogen storage process(hydrogenation reaction),the possibility of deep quinoline hydrogenation(up to 10HQ)in a flow-type reactor was demonstrated for the first time.
基金Supported by the Non-governmental International Science and Technology Cooperation Program from the Science and Technology Commission of Shanghai Municipality(No.10520706000)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110074110012)State Key Laboratory of Chemical Engineering Open Fund(No.SKL-ChE09C07)
文摘A variety of barium sulfate(BaSO4) carriers with or without mesopore structure were synthesized via precipitation reaction in aqueous solution of barium hydroxide and sulfuric acid with ethylene glycol as a modifying agent, and then calcined at various temperatures. The obtained BaSO4 was used as catalyst carriers for polystyrene(PS) hydrogenation, and BaSO4 supported palladium(Pd) catalysts with Pd content of 5wt% were prepared by using impregnation method. N2 physisorption, transmission electron microscopy, X-ray diffraction and kinetics studies were used to investigate the effect of carrier structure on the dispersion and geometric location of active metal and their catalytic activities in PS hydrogenation. It was found that the pore structure of carrier played an important role in the dispersion and location of Pd grains. The activation energy values for all the Pd/BaSO4 catalysts were around 49.1kJ/mol, while the pre-exponential factor for Pd/BSC-6H was much higher than others. The Pd/BSC-6H without mesopores had Pd grains deposited on the external surface of the carrier, and exhibited better activity than the mesoporous catalysts. It is indicated that the utilization of Pd/BSC-6H can reduce the pore diffusion of PS coils and enabled more active sites to participate in the PS hydrogenation.
基金Financial support by the program THALIS implemented within the framework of Education and Lifelong Learning Operational Programmeco-financed by the Hellenic Ministry of Education,Lifelong Learning and Religious Affairs and the European Social Fund,for the project 'Production of Energy Carriers from Biomass by Productsfinancial support provided by the Committee of the Special Account for Research Funds of the Technological Educational Institute of Western Macedonia(ELKE,TEIWM)
文摘The influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction was studied.A series of Al2O3-supported Ni catalysts were synthesized,with nickel loading of 8 wt%,using the incipient wetness,wet impregnation,and modified equilibrium deposition filtration methods.The catalysts' surface and bulk properties were determined by inductively coupled plasma(ICP),N2 adsorption-desorption isotherms(BET),X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and temperature-programmed reduction(TPR).Used catalysts were characterized by techniques such as elemental analysis and SEM in order to determine the level of carbon that was deposited and catalyst morphology.The results indicated that the synthesis method affected the textural,structural and surface properties of the catalysts,differentiating the dispersion and the kind of nickel species on alumina's surface.The formation of nickel aluminate phases was confirmed by the XRD and TPR analysis and the β-peak of the Ni/Al-edf catalyst was higher than in the other two catalysts,indicating that the nickel aluminate species of this catalyst were more reducible.Both Ni/Al-wet and Ni/Al-edf catalysts showed increasing CO2 selectivities and approximately constant CO selectivities for temperatures above 550℃,indicating that these catalysts successfully catalyze the water gas shift reaction.It was also confirmed that the Ni/Al-edf catalyst had the highest values for glycerol to gaseous products conversion,hydrogen yield,allyl alcohol,acetaldehyde,and acetic acid selectivities at 650℃ and the lowest carbon deposition of the catalysts tested.The correlation of the catalysts' structural properties,dispersion and reducibility with catalytic performance reveals that the EDF method can provide catalysts with higher specific surface area and active phase's dispersion,that are easier to reduce,more active and selective to hydrogen production,and more resistant to carbon deposition.
文摘A novel K2O and La2O3 promoted nickel catalyst supported on a-Al2O3 was prepared by co-impregnation method, and it exhibited higher activity and 6-aminocapronitrile selectivity than Ni/a-Al2O3 during the hydrogenation of adiponitrile in the absence of ammonia, i.e., K2O and La2O3 improved the performance of the nickel-based catalyst.
基金supported by the National Natural Science Foundation of China (21303194,21476227,21522608,21573232,21690084)Youth Innovation Promotion Association of the Chinese Academy of Sciences (2014163)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020100)the National Key Projects for Fundamental Research and Development of China (2016YFA0202801)the Department of Science and Technology of Liaoning Province (2015020086-101)~~
文摘Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach to enhance its catalytic performance in acetylene hydrogenation.In this work,SiO2‐supported Au‐Ni bimetallic catalysts were synthesized and investigated in the selective hydrogenation of acetylene.The Au‐Ni bimetallic catalysts exhibited much higher catalytic performance than that of the corresponding monometallic Au or Ni catalysts.By tuning the reduction temperature and/or Ni loading,we obtained an Au‐Ni/SiO2catalyst with optimal performance.The results of transmission electron microscopy imaging revealed that the Au‐Ni bimetallic particles were highly dispersed on the SiO2support.Meanwhile,analysis of the bimetallic catalyst by energy‐dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy demonstrated the formation of Au‐Ni alloy,which contributed to the synergistic effect between Au and Ni in the hydrogenation of acetylene.
文摘The intermittent nature of renewable resources requires for most applications the development of efficient and cost-effective technologies for steady supply of electrical energy.The storage of energy in the form of hydrogen chemically bound within organic molecules(rather than physically as compressed gas or cooled liquid)represents an alternative approach that is attracting great research interest.Compared to other liquid organic hydrogen carriers(LOHCs),dimethyl ether(DME)appears to have the largest potential impact on society,especially if inserted in technological chains of CO_(2) sequestration and utilization,so to determine an effective mitigation of environmental issues,without any net effect on the carbon footprint.Specifically,the steps of H2 storage and H2 release can take place in two coupled chemical processes,constituted by the exothermic synthesis of DME via CO_(2) hydrogenation and the endothermic steam reforming of DME,respectively.Herein,the latest advances in the development of heterogeneous bifunctional and hybrid catalysts for the direct hydrogenation of CO_(2) to DME are thoroughly reviewed,with special emphasis on thermodynamics,catalyst design and process feasibility.Despite many aspects behind the mechanism of DME synthesis from H2-CO_(2) streams are still to be uncovered,the recent progress in the research on H2 release by DME steam reforming is increasing the interest for effectively closing this binary H2 loop,in view of future green deals and sustainable research developments.
文摘A novel lanthana-promoted nickel catalyst supported on silica for the liquid phase hydrogenation of m-dinitrobenzene to m-phenylenediamine was prepared by an incipient wetness sequential impregnation method. It was found that Ni-La/SiO2 catalyst exhibited high activity and stability for m-dinitrobenzene hydrogenation. Over this catalyst, the conversion of m-dinitrobenzene and the yield of m-phenylenediamine were up to 97.1% and 93.5%, respectively, at 373 K and 2.6 MPa hydrogen pressure after reaction for 1 h.
文摘A sinter-locked three-dimensional network of microfibrous nickel catalyst has been fabricated based on wet layup papermaking and sintering processes and this novel approach permits the production of -11 W fuel cell power H2 via NH3 decomposition with a conversion of 97% at 750 ℃ in a bed of 0.6 cm^3.
基金Supported by the National Natural Science Foundation of China(No. 29792070-9, 29876032).
文摘Highly active and stable nickel catalyst for dehydrogenation of methane and hydrogenation of benzene is prepared from a precursor with hydrotalcite-like anionic clam structure by coprecipitation. The nickel particles have a narrow size distribution in several nanometers, and have a strong interaction with other components such as Al2O3. This catalyst is highly sensitive to further modification by doping and to reaction condition. On a modified catalyst, benzene hydrogenation to cyclohexane proceeds to complete at 373 K. While on another catalyst, different structured nanocarbons are obtained at moderate temperatures. It is found that the thioresistance of the nickel catalyst in hydrogenation can be improved by doping.
基金the National Key Research and Development Program of China(2022YFA1503502)National Natural Science Foundation of China(U21B20101,21932006,and 22202175)China Postdoctoral Science Foundation(2021M700119).
文摘Selective hydrogenation over earth-abundant metal catalysts is challenging but particularly valuable for practical applications in heterogeneous catalysis.Herein,we demonstrate that the catalytic selectivity of the commercial Raney nickel catalyst can be greatly tuned by modulation of the nickel surface by silica.Using quinoline hydrogenation as a model,we show that the silica-modified Raney nickel catalysts exhibit good activity,excellent selectivity,and long stability,whereas the undesired over-hydrogenation reactions are effectively hindered.In contrast,the pristine Raney nickel catalyst shows inferior selectivity for the targeted product.Mechanistic studies confirm a positive role of silica to facilitate the desorption of 1,2,3,4-tetrahydroquinoline from the catalyst surface,thus enhancing the product selectivity.
文摘The nickel-promoted Cu-containing catalysts (CuxNiy-MgAlO) for furfural (FFR) hydrogenation were prepared from the hydrotalcite-like precursors, and characterized by X-ray powder diffraction, inductively-coupled plasma atomic emission spectroscopy, N2 adsorption-desorption, UV-Vis diffuse reflectance spectra and temperatureprogrammed reduction with H2 in the present work. The obtained catalysts were observed to exhibit a better catalytic property than the corresponding Cu-MgAlO or Ni-MgAlO samples in FFR hydrogenation, and the CuNi-MgAIO catalyst with the actual Cu and Ni loadings of 12.5 wt% and 4.5 wt%, respectively, could give the highest FFR conversion (93.2%) and furfuryl alcohol selectivity (89.2%). At the same time, Cu~ species from the reduction of Cu2+ ions in spinel phases were deduced to be more active for FFR hydrogenation.
基金Funded in part by the Natural Science Foundation of China(No.22279096)the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120072)。
文摘Co/NC catalysts modified with rare earth elements(La,Ce,Pr)were prepared by pyrolysis of rare earth elements doped ZIF-67.The experimental results show that the modification of rare earth elements significantly improves the ammonia decomposition activity and stability of the Co/NC catalyst.The La-Co/NC catalyst can achieve an 82.3%ammonia decomposition and 18.4 mmol hydrogen production rate at 550℃with a GHSV of 20000 cm^(3)·h^(-1).Furthermore,no obvious performance degradation is observed after 72 hours of reaction for all rare earth elements modified catalysts.It is shown that the modification of rare earth elements significantly improves the surface alkalinity and surface chemical state of the catalyst,and thus improves the ammonia decomposition activity of the catalyst.A new type of high-performance ammonia decomposition Co-based catalyst is proposed,and the promoting effect of rare earth elements on the activity of ammonia decomposition is revealed.
文摘Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the most promising solutions for providing hydrogen fuel.Nickel iron bimetallic electrocatalysts have abundant sources,low cost,clean and pollution-free properties,and strong catalytic performance,This article mainly reviews the development and research of bimetallic nickel iron oxides and nickel iron alloys in recent years,and explores their synthesis methods,properties,and stability in depth.
基金supported by the Cultivation Project of Major Achievements Transformation of Sichuan Provincial Education Department(#14CZ0005)supported by the Natural Science Foundation of China(#21406184)
基金the National Natural Science Foundation of China.
文摘A Ni-RE-P-Al catalyst prepared by alkaline extraction of a rapidly quenched Ni-RE-P-Al alloy was characterized by means of ICP, BET, XRD, XPS and TEM. The results show that the rapidly quenched Ni-RE-P-Al alloy contained less crystalline Al_3Ni than Al-Ni alloy. After alkaline extraction, most of Al in the Ni-RE-P-Al alloy was leached out and the resulted Ni-RE-P-Al catalyst presented a sponge structure similar to Raney Ni. Although crystalline Ni is the major phase in the Ni-RE-P-Al catalyst and Raney Ni, amorphous Ni-P phase has been detected in the Ni-RE-P-Al catalyst. Studies on catalytic hydrogenation of toluene, phenyl ethylene, acetylene benzene, nitrobenzene, cyclohexanone and adiponitrile in liquid phase showed that the activity and selectivity of this Ni-RE-P-Al catalyst are superior to those of Raney Ni, especially at low temperatures. The amorphous phase is considered to be responsible for its superior catalytic properties.
基金Project(51125016)supported by the National Science Fund for Distinguished Young Scholars,ChinaProjects(51371119,51571151)supported by the National Natural Science Foundation of China
文摘In order to investigate the effect of nickel phosphide nanoparticles’ (Ni-P NPs) crystallization on hydrogen evolution reaction (HER) catalytic performance, amorphous Ni-P NPs and crystalline Ni12P5 were synthesized by a simple and low-cost autocatalytic reduction method and heat treatment process. The result of electrochemical tests shows that crystalline Ni12P5 has much higher HER catalytic activity than the amorphous one. X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy revealed that Ni?P bond formed during crystallization, making Ni positively charged and P negatively charged. This charged nature of Ni12P5 is similar to [NiFe] hydrogenase and its analogous, which make the removal of H2 less energy-cost.