BiFeO3-g-C3N4 nanoscaled composite was prepared with a hydrothermal method and evaluated as a highly efficient photo-Fenton like catalyst under visible light irradiation. The BiFeO3-g-CHN4 composite exhibited much str...BiFeO3-g-C3N4 nanoscaled composite was prepared with a hydrothermal method and evaluated as a highly efficient photo-Fenton like catalyst under visible light irradiation. The BiFeO3-g-CHN4 composite exhibited much stronger adsorption ability to lignin model pollutant (guaiacol) than that of BiFeO3, which may be due to the higher specific surface area (BiFeO3-g-C3N4:35.59 m2/g 〉 BiFeO3:7.42 m2/g) and the adsorption form of π-π stack between g-C3N4 and guaiacol. The composite exhibited excellent visible light-Fenton like catalysis activity, being influenced by the solution pH value and the proportions of BiFe03 and g-C3N4 nanosheets. Under optimal conditions with visible light irradiation, the BiFeO3- g-C3N4 composite yielded fast degradation of guaiacol with an apparent rate constant of 0.0452 rain-I, which were 5.21 and 6.80 folds of that achieved by using BiFeO3 and the mixture of BiFeO3 and g-C3N4 nanosheets, respectively. The significantly enhanced visible light-Fenton like catalytic properties of the BiFeO3-g-C3N4 composite in comparison with that of BiFeO3 was attributed to a large surface area, much increased adsorption capacity and the semiconductor coupling effect between BiFe03 and g-C3N4 in the composite.展开更多
基金supported by the National Natural Science Foundation of China (No. 31300494)the Natural Science Foundation of Hubei Province (No. 2014CFB586)+2 种基金the Foundation of Scientific Research Project from Hubei Provincial Department of Education (No. B2015046, Q20131402)the Foundation of Hubei Provincial Key Laboratory of Green Materials for Light Industry (No. 20132)the Doctoral Scientific Research Foundation of Hubei University of Technology (No. BSQD13008, BSQD12037)
文摘BiFeO3-g-C3N4 nanoscaled composite was prepared with a hydrothermal method and evaluated as a highly efficient photo-Fenton like catalyst under visible light irradiation. The BiFeO3-g-CHN4 composite exhibited much stronger adsorption ability to lignin model pollutant (guaiacol) than that of BiFeO3, which may be due to the higher specific surface area (BiFeO3-g-C3N4:35.59 m2/g 〉 BiFeO3:7.42 m2/g) and the adsorption form of π-π stack between g-C3N4 and guaiacol. The composite exhibited excellent visible light-Fenton like catalysis activity, being influenced by the solution pH value and the proportions of BiFe03 and g-C3N4 nanosheets. Under optimal conditions with visible light irradiation, the BiFeO3- g-C3N4 composite yielded fast degradation of guaiacol with an apparent rate constant of 0.0452 rain-I, which were 5.21 and 6.80 folds of that achieved by using BiFeO3 and the mixture of BiFeO3 and g-C3N4 nanosheets, respectively. The significantly enhanced visible light-Fenton like catalytic properties of the BiFeO3-g-C3N4 composite in comparison with that of BiFeO3 was attributed to a large surface area, much increased adsorption capacity and the semiconductor coupling effect between BiFe03 and g-C3N4 in the composite.