期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Preparation of CuO-CoO-MnO/SiO_2 Nanocomposite Aerogels as Catalyst Carriers and Their Application in the Synthesis of Diphenyl Carbonate 被引量:2
1
作者 赵越卿 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期595-599,共5页
CuO-CoO-MnO/SiO2 nanocomposite aerogels were prepared by using tetraethyl orthosilicate (TEOS) as Si source, and aqueous solution of Cu, Co and Mn acetates as transition metal sources via sol-gel process and supercr... CuO-CoO-MnO/SiO2 nanocomposite aerogels were prepared by using tetraethyl orthosilicate (TEOS) as Si source, and aqueous solution of Cu, Co and Mn acetates as transition metal sources via sol-gel process and supercritical drying (SCD) technique. The effect of synthesis conditions on gelation was investigated. Moreover, the composition of the CuO-CoO-MnO/SiO2 nanocomposite aerogels was characterized by electron dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), and the specific surface area of the nanocomposite aerogels was determined by the Brunauer-Emmett-Teller (BET) method. Diphenyl carbonate (DPC) as the product was analyzed by gas chromatography (GC). The experimental results show that the range of optimal temperature for gelation is 30-45 ℃, and the pH is 3.0-4.5. CuO-CoO-MnO/SiO2 nanocomposite aerogels are porous with a specific surface area of 384.9-700.6 m2/g. Compared to CO2 SCD, ethanol SCD is even favorable to the formation of aerogel with high specific surface area. The transition metals content in the nanocomposite aerogels can be controlled to be 0.71at%-13.77at%. With CuO-CoO-MnO/SiO2 nanocomposite aerogels as catalyst carrier, the yield of DPC is in direct proportion to the atomic fraction of transition metals in the nanocomposite aerogels, and it is up to 26.31 mass%, which is much higher than that via other porous carriers. 展开更多
关键词 composite aerogel PREPARATION catalyst carrier diphenyl carbonate
下载PDF
Development of a double-side ordered membrane electrode assembly based on titanium nitride nanoarrays
2
作者 Lingfeng Xuan Deqing Mei +2 位作者 Caiying Zhou Wenze Mao Yancheng Wang 《Industrial Chemistry & Materials》 2024年第4期622-633,共12页
The membrane electrode assembly(MEA)plays a crucial role in the functionality of proton exchange membrane fuel cells(PEMFCs).The channels present within the catalyst layer of MEAs exhibit a disordered configuration,wh... The membrane electrode assembly(MEA)plays a crucial role in the functionality of proton exchange membrane fuel cells(PEMFCs).The channels present within the catalyst layer of MEAs exhibit a disordered configuration,which consequently give rise to low efficiency in mass transportation.In order to enhance the mass transfer performance and the corrosion resistance of the catalyst layer,this paper developed a double-side ordered MEA based on TiN nanorod arrays.We synthesized TiN nanorod arrays on the ITO surface by a seed-assisted hydrothermal reaction and nitriding treatment,and coated the catalyst uniformly on the TiN support by ultrasonic spraying.Then the double-side ordered MEA was fabricated by transfer printing,and achieved a peak power of 678.30 mW cm^(-2) with a cathode platinum loading of 0.2 mg cm^(-2) at 80℃ and anode saturated humidity.After 200 hours of accelerated stress test(AST)at 90℃ and 30/30%relative humidity,the peak performance only dropped by 4.8%.These results provide substantial evidence for the effectiveness of our developed double-side ordered MEA which can mitigate catalyst polarization corrosion.Thus,this study reveals the immense potential of the TiN nanorod array-based double-side ordered MEA in advancing the development of efficient and stable MEAs. 展开更多
关键词 PEMFC Preparation of MEA Ordered MEA TiN nanorod array Catalyst carrier
下载PDF
STUDY ON APPLICATION OF POTASSIUM TITANATE WHISKER MATERIALS IN PREPARATION OF PHOTOCATALYST
3
作者 HUO Pengwei LI Songtian +2 位作者 WU Chundu YAN Yongsheng WANG Lingling 《Chinese Journal of Reactive Polymers》 2007年第1期7-14,共8页
The K2Ti4O9 whiskers were chosen for the catalyst carrier, TiO2/potassium titanate photocatalyst was prepared by Sol-gel method. The product was characterated by X-ray diffraction and SEM. EDS shows that, the main pec... The K2Ti4O9 whiskers were chosen for the catalyst carrier, TiO2/potassium titanate photocatalyst was prepared by Sol-gel method. The product was characterated by X-ray diffraction and SEM. EDS shows that, the main peck included Ti, O, and K in potassium titanate whisker. The main peak of K disappeared and the peaks of Ti, O stayed after whisker was covered. It directed that the surface of sample was covered by TiO2. XRD shows that diffraction peak appeared, which was corresponded to the peak of anatase TiO2. In the reaction device of photochemistry, using middle-pressure mercury lamp as illumination, rhodamine B as simulant pollutant, the photocatalytic performance of TiO2/potassium titanate was studied. Under the same conditions, the lower pH, the larger illuminance, the higher temperature, the greater aeration quantum and the lower initial concentration of rhodamine B, the higher decoloration rate was got. Under our experiment conditions: pH 6, the illuminance of 250W, the temperature of 313K, and the aeration quantum of 2.0L/min. When the concentration of rhodamine B was 8mg/L The photocatalyst of TiO2/potassium titanate was 0.01g/L. The decoloration rate of TiO2/potassium titanate dealt with the rhodamine B reach over 95% in 160min, and compare with TiO2, the decoloration rate of rhodamine B was improved 0.50~1.91 multiple. TiO2/potassium titanate can be used to treatment of dye wastewater. 展开更多
关键词 K2Ti4O9 TiO2/potassium titanate PHOTOCATALYSIS Catalyst carrier.
下载PDF
Production of ammonia from plasma-catalytic decomposition of urea: Effects of carrier gas composition 被引量:2
4
作者 Xing Fan Jian Li +1 位作者 Danqi Qiu Tianle Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期94-103,共10页
Effects of carrier gas composition(N2/air) on NH3 production, energy efficiency regarding NH3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an... Effects of carrier gas composition(N2/air) on NH3 production, energy efficiency regarding NH3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an Al2 O3-packed dielectric barrier discharge(DBD) reactor at room temperature. Results show that the presence of O2 in the carrier gas accelerates the conversion of urea but leads to less generation of NH3. The final yield of NH3 in the gas phase decreased from 70.5%, 78.7%, 66.6% and 67.2% to 54.1%, 51.7%, 49.6% and 53.4% for applied voltages of 17, 19, 21 and 23 kV, respectively when air was used as the carrier gas instead of N2.From the viewpoint of energy savings, however, air carrier gas is better than N2 due to reduced energy consumption and increased energy efficiency for decomposition of a fixed amount of urea. Carrier gas composition has little influence on the major decomposition pathways of urea under the synergetic effects of plasma and Al2 O3 catalyst to give NH3 and CO2 as the main products. Compared to a small amount of N2 O formed with N2 as the carrier gas, however,more byproducts including N2O and NO2 in the gas phase and NH4 NO3 in solid deposits were produced with air as the carrier gas, probably due to the unproductive consumption of NH3, the possible intermediate HNCO and even urea by the abundant active oxygen species and nitrogen oxides generated in air-DBD plasma. 展开更多
关键词 Ammonia production Urea decomposition Dielectric barrier discharge(DBD) plasma Al2O3 catalyst carrier gas composition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部