Nano-pelletα-Al_(2)O_(3) was prepared using aluminum nitrate as precursor and urea as fuel by a fast method of solution combustion synthesis.The formation of the nano material was dependent on the molar ratio of fuel...Nano-pelletα-Al_(2)O_(3) was prepared using aluminum nitrate as precursor and urea as fuel by a fast method of solution combustion synthesis.The formation of the nano material was dependent on the molar ratio of fuel/oxidant,calcination temperature,and foreign metallic ions.The prerequisite conditions of the formation were a suitable fuel/oxidant molar ratio larger than two and calcination temperature higher than 673 K.Foreign ions,Ce^(4+) or Co^(2+),hindered this formation via promoting the generation of stable penta-coordinated Al^(3+) ions due to strong interaction with alumina,were revealed by ^(27)Al NMR spectra.Such Al^(3+) ions were recognized as a critical intermediate state for the phase transformation of alumina and their presence deterred the transformation.The nano-pellet morphology of the product demonstrated a specific surface area of 69 m^(2)/g,of which the external surface area occupied 59 m^(2)/g.It was found that the supported cobalt acetate on such nano-pellets existed as nanoparticles attached to the external surface,evidenced by the TEM characterization.The prepared catalyst could efficiently catalyze the selective oxidation of cyclohexane under the reaction condition of pressure under 0.8 MPa,temperature at 373 K,and time for 4 hours.The conversion of the reaction achieved up to 7.9%;while the cyclohexanone selectivity was 42.7%and the cyclohexanone and cyclohexanol selectivity was 91.6%.This catalytic performance recommends the supported cobalt acetate on the inert nano-pellet a-Al_(2)O_(3) as a promising catalyst for the selective oxidation of cyclohexane.展开更多
Nanostructure K2NiF4 type oxides La2-xKxCuO4 complex oxides were prepared using the Sol-Gel method, characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), and Scanning Electron Microscopy (...Nanostructure K2NiF4 type oxides La2-xKxCuO4 complex oxides were prepared using the Sol-Gel method, characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), and Scanning Electron Microscopy (SEM). The catalytic activity for soot combustion was evaluated by the Temperature-Programmed Reaction (TPO) technique. The results demonstrated that the substitution quality of K^+ for La^3+ at the A-site would increase the catalytic activities of La2-xKxCuO4 for soot combustion greatly; the substitution quality affected the structure and catalytic activity obviously. The La1.8K0.2CuO4 complex oxides with tetrahedral structures had the best catalytic activity for soot combustion, and the ignition temperature of soot combustion was lowered from 490 to 320 ℃.展开更多
Supported manganese oxide catalysts were prepared by incipient wetness impregnation method for methane catalytic combustion, and effects of the support (Al2O3, SiO2 and TiO2) and Mn loading were investigated. These ...Supported manganese oxide catalysts were prepared by incipient wetness impregnation method for methane catalytic combustion, and effects of the support (Al2O3, SiO2 and TiO2) and Mn loading were investigated. These catalysts were characterized with N2 adsorption, X-ray diffraction, X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Methane conversion varied in a large range depending on supports or Mn loading. Al2O3 supported 15% Mn catalyst exhibited better activity toward methane catalytic oxidation. The manganese state and oxygen species played an important role in the catalytic performance,展开更多
The K2NiF4 type oxides, La2-x KxCuO4 complex oxides with nanometric size were prepared by sol-gel method. The characters of these samples were analyzed by H2-TPR, XRD, FT-IR and SEM. The catalytic activity for soot co...The K2NiF4 type oxides, La2-x KxCuO4 complex oxides with nanometric size were prepared by sol-gel method. The characters of these samples were analyzed by H2-TPR, XRD, FT-IR and SEM. The catalytic activity for soot combustion was evaluated by temperature-programmed reaction (TPO) technique. The results demonstrate that the substitution of K^+ for La^3+ at A-site will increase the catalytic activities of La2-xKxCuO4 to soot combustion greatly, and the substitution quantity affects the structure and catalytic activity obviously. The La1.8 K0.2 CuO4 complex oxides with tetrahedral structure has the best catalytic activity for soot removal reaction, the ignition temperature of soot combustion is decreased from 490 to 320℃.展开更多
Silicalite-1(S1)foam was functionalized by supporting manganese-cobalt(Mn-Co)mixed oxides to develop the structured hierarchical catalyst(Mn-Co@SlF)for catalytic combustion for the first time.The self-supporting S1 fo...Silicalite-1(S1)foam was functionalized by supporting manganese-cobalt(Mn-Co)mixed oxides to develop the structured hierarchical catalyst(Mn-Co@SlF)for catalytic combustion for the first time.The self-supporting S1 foam with hierarchical porosity was prepared via hydrothermal synthesis with polyurethane(PU)foam as the template.Subsequently,Mn-Co oxide nano sheets were uniformly grown on the surface of S1 foams under hydrothermal conditions to prepare the structured hierarchical catalyst with specific surface area of 354 m^2·g^-1,micropore volume of 0.141 cm^3·g^-1 and total pore volume of 0.217 cm3·g^-1,as well as a good capacity to adsorb toluene(1.7 mmol·g^-1 at p/p0=0.99).Comparative catalytic combustion of toluene of over developed structured catalyst Mn-Co@SlF was performed against the control catalysts of bulk Mn-Co@S1(i.e.,the crushed Mn-Co@SlF)and unsupported Mn-Co oxides(i.e.,Mn-Co).Mn-Co@SlF exhibited comparatively the best catalytic performance,that is,complete and stable toluene conversion at 2480 C over 65 h due to the synergy between Mn-Co oxides and S1 foam,which provided a large number of oxygen vacancies,high redox capacity.In addition,the hierarchical porous structure also improved the accessibility of active sites and facilitated the global mass transfer across the catalyst bed,being beneficial to the catalysis and catalyst longevity.展开更多
Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential ...Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential long-term effects on human health.Among the various available methods for volatile organic compound elimination,the catalytic combustion is the most attractive method due to its high efficiency,low cost,simple operation,and easy scale-up.Perovskite oxides,as a large family of metal oxides with their A-site mainly of lanthanide element and/or alkaline earth metal element and B-site of transition metal element,have been extensively investigated as active and stable catalysts for volatile organic compound removal reactions due to their abundant compositional elements,high thermal/chemical stability,and compositional/structural flexibility.The catalytic performance of perovskite oxides is strongly depended on its material composition,morphology,and surface/bulk properties,while the doping,tailored synthesis route,and composite construction may have a significant effect on the bulk(oxygen vacancy concentration,lattice structure),surface(oxygen species,defect)properties,and particulate morphology,consequently the catalytic activity and stability for volatile organic compound removal.Herein,a comprehensive review about the recent advances in perovskite oxides for volatile organic compound elimination reactions based on catalytic combustion is presented from different aspects with a special emphasis on the material design strategies,such as compositional tuning,morphology control,nanostructure building,hybrid construction,and surface modification.At last,some perspectives are presented on the development and design of perovskite oxide-based catalysts for volatile organic compound removal applications by highlighgting the critical issues and challenges.展开更多
The double perovskite oxides LaSrFeMo0.9Co0.1O6 was prepared by co-precipitation method and sol-gel method. The title catalysts were calcined at 800°C and characterized by XRD H2-TPR, SEM and TG-DTA techniques. T...The double perovskite oxides LaSrFeMo0.9Co0.1O6 was prepared by co-precipitation method and sol-gel method. The title catalysts were calcined at 800°C and characterized by XRD H2-TPR, SEM and TG-DTA techniques. The catalytic activity was evaluated for methane combustion. The specific surface area of them was calculated by BET model. The samples exhibit significant catalytic activity for methane combustion at 800°C. Upon calcination at 800°C, the LaSrFeMo0.9Co0.1O6 prepared by sol-gel method retains a specific surface area of 24 m2.g-1 and shows an excellent activity for methane combustion (the conversion of 10% and 90% are obtained at 505°C and 660°C, respectively).展开更多
Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClit...Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClittle impact on activity,especially at high space velocities due to the long hydrothermal time with less absorbed oxygen species and crystal defects.Overall,these results help clarify methane activa-tion mechanisms and aid the development of more efficient low-cost catalysts.展开更多
Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)proce...Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)process,which combines coal gasification and high-temperature fuel cells,was proposed in 2017 to improve the efficiency of coal-based power generation and reduce CO_(2)emissions.Supported by the National Key R&D Program of China,the IGFC for nearzero CO_(2)emissions program was enacted with the goal of achieving near-zero CO_(2)emissions based on(1)catalytic combustion of the flue gas from solid oxide fuel cell(SOFC)stacks and(2)CO_(2)conversion using solid oxide electrolysis cells(SOECs).In this work,we investigated a kW-level catalytic combustion burner and SOEC stack,evaluated the electrochemical performance of the SOEC stack in H2O electrolysis and H2O/CO_(2)co-electrolysis,and established a multiscale and multi-physical coupling simulation model of SOFCs and SOECs.The process developed in this work paves the way for the demonstration and deployment of IGFC technology in the future.展开更多
The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5-xZr0.5-xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzen...The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5-xZr0.5-xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzene. The prepared catalysts were characterized by X-ray diffraction (XRD), surface area analysis, oxygen storage capacity (OSC), and H2-temperature programmed reduction (H2-TPR). Catalytic test was performed on a conventional fixed bed flow reactor. The characterization results revealed that Y and Mn ions entered into the ceria-zirconia mixed oxides framework, which improved the textural properties and greatly promoted the MnOx dispersion on the support surface. The complete conversion temperature of benzene on MnOx/Ce0.4Zr0.4Y0.1Mn0.1Oy/Al2O3 was 563 K, and the selectivity of carbon dioxides was 99%. This catalyst could be applied in a wide range of GHSV and wide concentration condition, showing great potential for application.展开更多
The redox property and oxygen species play an important role in the catalytic oxidation of volatile organic compounds(VOCs).In this paper,a series of Mn_(x)Co_(3-x)O_(4)catalysts with tubular structure were synthesize...The redox property and oxygen species play an important role in the catalytic oxidation of volatile organic compounds(VOCs).In this paper,a series of Mn_(x)Co_(3-x)O_(4)catalysts with tubular structure were synthesized and applied for the catalytic combustion of toluene.Various characterization technologies were employed to reveal the relationship between the catalytic performance of the Mn_(x)Co_(3-x)O_(4)catalysts and Mn doping.The results of XRD,SEM and N2 adsorption-desorption analyses showed that the Mn doping had significant effects on the structure and morphology of the Mn_(x)Co_(3-x)O_(4)catalysts.The H2-TPR,O2-TPD,and XPS results proved that the strong interaction between Co and Mn resulted in the enhanced Olatt mobility,the richer active oxygen species,and the enhanced redox property in comparison with the pure Co_(3)O_(4)sample,which were crucial to the improvement of the catalytic activity of Co-Mn catalysts.The best catalyst,Co5-Mn5 sample,exhibited a good and stable activity to catalytically oxidize toluene at low temperatures even in the presence of water vapor,indicating that it is a potential material to be used in the commercialization of catalytic abatement of toluene.展开更多
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys...Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.展开更多
A facile procedure was carried out to prepare macroporous perovskite-type complex oxide catalysts of La1–xKxCo1–yFeyO3(x=0,0.1,y=0,0.1) by using the combined method of organic ligation and solution combustion.This m...A facile procedure was carried out to prepare macroporous perovskite-type complex oxide catalysts of La1–xKxCo1–yFeyO3(x=0,0.1,y=0,0.1) by using the combined method of organic ligation and solution combustion.This method could ensure the formation of the desired macroporous structures and the desired crystal phases of the prepared catalysts.It was found that the macroporous catalysts showed higher catalytic activities for soot combustion than that of the corresponding nanometric samples,and the macroporous ...展开更多
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile...Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O.展开更多
MgFe2O4 spinel ferrite and La0.6Pb0.2Mg0.2MnO3 perovskite nanopowders were synthesized by a combined sol-gel and self-combustion method and heat treatment. The morphological and structural characterization of the obta...MgFe2O4 spinel ferrite and La0.6Pb0.2Mg0.2MnO3 perovskite nanopowders were synthesized by a combined sol-gel and self-combustion method and heat treatment. The morphological and structural characterization of the obtained powders has been performed with various techniques: X-ray diffraction (XRD), SEM observations, EDAX spectroscopy and BET analysis. The samples have been catalytically tested in flameless combustion reaction of acetone, benzene, propane and Pb free gasoline at atmospheric pressure. The results revealed a higher catalytic activity of La0.6Pb0.2Mg0.2 MnO3 perovskite than that of MgFe2O4 ferrite. This higher catalytic activity can be ascribed to smaller crystallite size (27 nm), larger surface area (8.5 m2/g) and the presence of manganese cations with variable valence (Mn3+ - Mn4+). The current results suggest that La0.6Pb0.2Mg0.2MnO3 perovskite is preferable to the Mg ferrite and that it can be a promising catalyst for acetone and propane combustion at low temperatures.展开更多
Various manganese oxides(MnOx) prepared via citric acid solution combustion synthesis were applied for catalytic oxidation of benzene. The results showed the ratios of citric acid/manganese nitrate in synthesizing pro...Various manganese oxides(MnOx) prepared via citric acid solution combustion synthesis were applied for catalytic oxidation of benzene. The results showed the ratios of citric acid/manganese nitrate in synthesizing process positively affected the physicochemical properties of MnOx, e.g., BET(Brunauer-Emmett-Teller) surface area, porous structure, reducibility and so on, which were in close relationship with their catalytic performance. Of all the catalysts, the sample prepared at a citric acid/manganese nitrate ratio of 2:1(C2M1) displayed the best catalytic activity with T(90)(the temperature when 90% of benzene was catalytically oxidized) of 212 ℃. Further investigation showed that C2M1 was Mn2O3 with abundant nano-pores, the largest surface area and the proper ratio of surface Mn^4+/Mn^3+, resulting in preferable low-temperature reducibility and abundant surface active adsorbed oxygen species. The analysis results of the in-situ Fourier transform infrared spectroscopy(in-situ FTIR) revealed that the benzene was successively oxidized to phenolate, o-benzoquinone, small molecules(such as maleates, acetates, and vinyl), and finally transformed to CO2 and H2O.展开更多
in this study, cerarnics honeycomb-supported ABO_3 perovskite type oxides were preparedby changing the composition of A and B site cations, and observed their activities for lean CH.oxidation. In the case of change in...in this study, cerarnics honeycomb-supported ABO_3 perovskite type oxides were preparedby changing the composition of A and B site cations, and observed their activities for lean CH.oxidation. In the case of change in A site composition La_(0.3)Sr_(0.2)MnO_3 and La_(0.6)Sr_3MnO_3 is the mostactive catalysts for 1 v% CH_4 and 2 v% CH_4 respectively. But LaMn_(0.5)Co_(0.5)O_3 oxide is the best ac-tive catalyst for 1-2v% CH_4 among the oxides by changing B site compositions of LaBO_3 and su-perior to La_(0.3)Sr_(0.2)MnO_3 and La_(0.6)Sr_(0.4)MnO_3 catalysts.Adding trace Pd improved the activity and characteristics of space velocity for LaMn_(0.5)CO_(0.5)O_3and La_(0.3)Sr_(0.2)MnO_3 Although LaMn_(0.5)Co_(0.5)O_3 +Pd (0.03 wt%) was less active than the Pd catalyst,the activity was more than Pt catalyst at a conversion level below 90%.展开更多
A technique for preparing perovskite type oxides was developed. By this technique, ultra fine particles of La 0.9 RE 0.1 MnO 3 (RE: Y, Ce, Pr, Sm, Gd,or Dy) with high surface area and single perovskite stru...A technique for preparing perovskite type oxides was developed. By this technique, ultra fine particles of La 0.9 RE 0.1 MnO 3 (RE: Y, Ce, Pr, Sm, Gd,or Dy) with high surface area and single perovskite structure were prepared, and the series of La 0.9 RE 0.1 MnO 3 catalysts were studied experimentally. The so prepared ultra fine particles exhibites high catalytic activity for CH 4 total oxidation. The ultra fine particles of La 0.9 RE 0.1 MnO 3 (except for La 0.9 Pr 0.1 MnO 3) prepared by this method are thermally much more stable than LaMnO 3. Of the La 0.9 RE 0.1 MnO 3 series, La 0.9 Y 0.1 MnO 3 is most thermally stable, and La 0.9 Y 0.1 MnO 3 or La 0.9 Gd 0.1 MnO 3 (varies with calcination temperature) exhibits the highest catalytic activity for total oxidation of methane. The specific surface area of La 0.9 Y 0.1 MnO 3 calcined at 1000 ℃ reaches 14.9 m 2·g -1 , while the specific surface area of LaMnO 3 calcined at the same temperature is only 1.8 m 2·g -1 .展开更多
A series of Mn-Cu mixed oxide catalysts were prepared by precipitation method. The catalysts were characterized by N2 adsorp- tion-desorption, H2-TPR and XPS. When the loading ratio of manganese oxides to copper oxide...A series of Mn-Cu mixed oxide catalysts were prepared by precipitation method. The catalysts were characterized by N2 adsorp- tion-desorption, H2-TPR and XPS. When the loading ratio of manganese oxides to copper oxides was 8:2 or 7:3, the catalysts possessed better catalytic activity, and benzene was converted completely at 558 K. Results of H2-TPR showed that the loading of a small amount of copper oxides decreased the reduction temperature of catalysts. Results of XPS showed that the loading of a small amount of copper oxides increased the proportion of manganese and defective oxygen on the surface of catalysts, and stabilized manganese at higher oxidation state. And the catalyst with the loading ratio 7:3 was a little worse than 8:2, since the interaction between manganese oxides and copper oxides is too strong, copper oxides migrate to the surface of catalysts and manganese oxides in excess are immerged.展开更多
Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H_2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene ...Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H_2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu-Mn-Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu-Mn-Ce catalyst, a portion of Cu and Mn species entered into the Ce O2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu-Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu-Mn and Cu-Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species.展开更多
基金Funded by the Yangfan Project of Guangdong Province(No.2015YT02C089)the Natural Science Foundation of Shandong Province(No.ZR2020MB113)。
文摘Nano-pelletα-Al_(2)O_(3) was prepared using aluminum nitrate as precursor and urea as fuel by a fast method of solution combustion synthesis.The formation of the nano material was dependent on the molar ratio of fuel/oxidant,calcination temperature,and foreign metallic ions.The prerequisite conditions of the formation were a suitable fuel/oxidant molar ratio larger than two and calcination temperature higher than 673 K.Foreign ions,Ce^(4+) or Co^(2+),hindered this formation via promoting the generation of stable penta-coordinated Al^(3+) ions due to strong interaction with alumina,were revealed by ^(27)Al NMR spectra.Such Al^(3+) ions were recognized as a critical intermediate state for the phase transformation of alumina and their presence deterred the transformation.The nano-pellet morphology of the product demonstrated a specific surface area of 69 m^(2)/g,of which the external surface area occupied 59 m^(2)/g.It was found that the supported cobalt acetate on such nano-pellets existed as nanoparticles attached to the external surface,evidenced by the TEM characterization.The prepared catalyst could efficiently catalyze the selective oxidation of cyclohexane under the reaction condition of pressure under 0.8 MPa,temperature at 373 K,and time for 4 hours.The conversion of the reaction achieved up to 7.9%;while the cyclohexanone selectivity was 42.7%and the cyclohexanone and cyclohexanol selectivity was 91.6%.This catalytic performance recommends the supported cobalt acetate on the inert nano-pellet a-Al_(2)O_(3) as a promising catalyst for the selective oxidation of cyclohexane.
基金Beijing Municipal Education Committee Program (KM200710017006)
文摘Nanostructure K2NiF4 type oxides La2-xKxCuO4 complex oxides were prepared using the Sol-Gel method, characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), and Scanning Electron Microscopy (SEM). The catalytic activity for soot combustion was evaluated by the Temperature-Programmed Reaction (TPO) technique. The results demonstrated that the substitution quality of K^+ for La^3+ at the A-site would increase the catalytic activities of La2-xKxCuO4 for soot combustion greatly; the substitution quality affected the structure and catalytic activity obviously. The La1.8K0.2CuO4 complex oxides with tetrahedral structures had the best catalytic activity for soot combustion, and the ignition temperature of soot combustion was lowered from 490 to 320 ℃.
基金supported by the New Century Excellent Talent Project of China (NCET-05-0783).
文摘Supported manganese oxide catalysts were prepared by incipient wetness impregnation method for methane catalytic combustion, and effects of the support (Al2O3, SiO2 and TiO2) and Mn loading were investigated. These catalysts were characterized with N2 adsorption, X-ray diffraction, X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Methane conversion varied in a large range depending on supports or Mn loading. Al2O3 supported 15% Mn catalyst exhibited better activity toward methane catalytic oxidation. The manganese state and oxygen species played an important role in the catalytic performance,
文摘The K2NiF4 type oxides, La2-x KxCuO4 complex oxides with nanometric size were prepared by sol-gel method. The characters of these samples were analyzed by H2-TPR, XRD, FT-IR and SEM. The catalytic activity for soot combustion was evaluated by temperature-programmed reaction (TPO) technique. The results demonstrate that the substitution of K^+ for La^3+ at A-site will increase the catalytic activities of La2-xKxCuO4 to soot combustion greatly, and the substitution quantity affects the structure and catalytic activity obviously. The La1.8 K0.2 CuO4 complex oxides with tetrahedral structure has the best catalytic activity for soot removal reaction, the ignition temperature of soot combustion is decreased from 490 to 320℃.
基金financial support from the Key Projects of Natural Science Foundation of Liaoning Province(2018010047-301)the Shenyang National Laboratory for Materials Science for his research(Y8L6641161)+1 种基金financial support from the National Key R&D Program of China(2016YFB0501303)funding from European Union's Horizon 2020 research and innovation programme under grant agreement No.872102。
文摘Silicalite-1(S1)foam was functionalized by supporting manganese-cobalt(Mn-Co)mixed oxides to develop the structured hierarchical catalyst(Mn-Co@SlF)for catalytic combustion for the first time.The self-supporting S1 foam with hierarchical porosity was prepared via hydrothermal synthesis with polyurethane(PU)foam as the template.Subsequently,Mn-Co oxide nano sheets were uniformly grown on the surface of S1 foams under hydrothermal conditions to prepare the structured hierarchical catalyst with specific surface area of 354 m^2·g^-1,micropore volume of 0.141 cm^3·g^-1 and total pore volume of 0.217 cm3·g^-1,as well as a good capacity to adsorb toluene(1.7 mmol·g^-1 at p/p0=0.99).Comparative catalytic combustion of toluene of over developed structured catalyst Mn-Co@SlF was performed against the control catalysts of bulk Mn-Co@S1(i.e.,the crushed Mn-Co@SlF)and unsupported Mn-Co oxides(i.e.,Mn-Co).Mn-Co@SlF exhibited comparatively the best catalytic performance,that is,complete and stable toluene conversion at 2480 C over 65 h due to the synergy between Mn-Co oxides and S1 foam,which provided a large number of oxygen vacancies,high redox capacity.In addition,the hierarchical porous structure also improved the accessibility of active sites and facilitated the global mass transfer across the catalyst bed,being beneficial to the catalysis and catalyst longevity.
基金supported by the National Natural Science Foundation of China(Project No.21908106 and 21878158)the Jiangsu Natural Science Foundation(Project No.BK20190682)+2 种基金the Program for Jiangsu Specially Appointed Professorsthe Funding from State Key Laboratory of Materials-Oriented Chemical Engineering(Project No.ZK201808)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential long-term effects on human health.Among the various available methods for volatile organic compound elimination,the catalytic combustion is the most attractive method due to its high efficiency,low cost,simple operation,and easy scale-up.Perovskite oxides,as a large family of metal oxides with their A-site mainly of lanthanide element and/or alkaline earth metal element and B-site of transition metal element,have been extensively investigated as active and stable catalysts for volatile organic compound removal reactions due to their abundant compositional elements,high thermal/chemical stability,and compositional/structural flexibility.The catalytic performance of perovskite oxides is strongly depended on its material composition,morphology,and surface/bulk properties,while the doping,tailored synthesis route,and composite construction may have a significant effect on the bulk(oxygen vacancy concentration,lattice structure),surface(oxygen species,defect)properties,and particulate morphology,consequently the catalytic activity and stability for volatile organic compound removal.Herein,a comprehensive review about the recent advances in perovskite oxides for volatile organic compound elimination reactions based on catalytic combustion is presented from different aspects with a special emphasis on the material design strategies,such as compositional tuning,morphology control,nanostructure building,hybrid construction,and surface modification.At last,some perspectives are presented on the development and design of perovskite oxide-based catalysts for volatile organic compound removal applications by highlighgting the critical issues and challenges.
文摘The double perovskite oxides LaSrFeMo0.9Co0.1O6 was prepared by co-precipitation method and sol-gel method. The title catalysts were calcined at 800°C and characterized by XRD H2-TPR, SEM and TG-DTA techniques. The catalytic activity was evaluated for methane combustion. The specific surface area of them was calculated by BET model. The samples exhibit significant catalytic activity for methane combustion at 800°C. Upon calcination at 800°C, the LaSrFeMo0.9Co0.1O6 prepared by sol-gel method retains a specific surface area of 24 m2.g-1 and shows an excellent activity for methane combustion (the conversion of 10% and 90% are obtained at 505°C and 660°C, respectively).
基金supported by the National Key Research and Development Program of China (2016YFC0204301)~~
文摘Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClittle impact on activity,especially at high space velocities due to the long hydrothermal time with less absorbed oxygen species and crystal defects.Overall,these results help clarify methane activa-tion mechanisms and aid the development of more efficient low-cost catalysts.
基金This work was financially supported by the National Key R&D Program of China(2017YFB0601904).
文摘Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)process,which combines coal gasification and high-temperature fuel cells,was proposed in 2017 to improve the efficiency of coal-based power generation and reduce CO_(2)emissions.Supported by the National Key R&D Program of China,the IGFC for nearzero CO_(2)emissions program was enacted with the goal of achieving near-zero CO_(2)emissions based on(1)catalytic combustion of the flue gas from solid oxide fuel cell(SOFC)stacks and(2)CO_(2)conversion using solid oxide electrolysis cells(SOECs).In this work,we investigated a kW-level catalytic combustion burner and SOEC stack,evaluated the electrochemical performance of the SOEC stack in H2O electrolysis and H2O/CO_(2)co-electrolysis,and established a multiscale and multi-physical coupling simulation model of SOFCs and SOECs.The process developed in this work paves the way for the demonstration and deployment of IGFC technology in the future.
基金supported by the National Natural Science Foundation of China (20773090)the National Natural Science Key Foundation of China (2033030)
文摘The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5-xZr0.5-xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzene. The prepared catalysts were characterized by X-ray diffraction (XRD), surface area analysis, oxygen storage capacity (OSC), and H2-temperature programmed reduction (H2-TPR). Catalytic test was performed on a conventional fixed bed flow reactor. The characterization results revealed that Y and Mn ions entered into the ceria-zirconia mixed oxides framework, which improved the textural properties and greatly promoted the MnOx dispersion on the support surface. The complete conversion temperature of benzene on MnOx/Ce0.4Zr0.4Y0.1Mn0.1Oy/Al2O3 was 563 K, and the selectivity of carbon dioxides was 99%. This catalyst could be applied in a wide range of GHSV and wide concentration condition, showing great potential for application.
基金This work is supported by the Interdisciplinary Integration and Innovation Project of JLU(JLUXKJC 2020204)the National Natural Science Foundation of China(No.51672276,51772294,51972306)the Fundamental Research Funds for the Central Universities,JLU.
文摘The redox property and oxygen species play an important role in the catalytic oxidation of volatile organic compounds(VOCs).In this paper,a series of Mn_(x)Co_(3-x)O_(4)catalysts with tubular structure were synthesized and applied for the catalytic combustion of toluene.Various characterization technologies were employed to reveal the relationship between the catalytic performance of the Mn_(x)Co_(3-x)O_(4)catalysts and Mn doping.The results of XRD,SEM and N2 adsorption-desorption analyses showed that the Mn doping had significant effects on the structure and morphology of the Mn_(x)Co_(3-x)O_(4)catalysts.The H2-TPR,O2-TPD,and XPS results proved that the strong interaction between Co and Mn resulted in the enhanced Olatt mobility,the richer active oxygen species,and the enhanced redox property in comparison with the pure Co_(3)O_(4)sample,which were crucial to the improvement of the catalytic activity of Co-Mn catalysts.The best catalyst,Co5-Mn5 sample,exhibited a good and stable activity to catalytically oxidize toluene at low temperatures even in the presence of water vapor,indicating that it is a potential material to be used in the commercialization of catalytic abatement of toluene.
基金supported by the National High Technology Research and Development Program (863 Program,2015AA034603)the National Natural Science Foundation of China (21377008,201077007,20973017)+1 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Platform National Materials Research Base Construction~~
文摘Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.
基金supported by the National Natural Science Foundation of China (20833011 and 20803093)the 863 Project of China (2006AA06Z346)
文摘A facile procedure was carried out to prepare macroporous perovskite-type complex oxide catalysts of La1–xKxCo1–yFeyO3(x=0,0.1,y=0,0.1) by using the combined method of organic ligation and solution combustion.This method could ensure the formation of the desired macroporous structures and the desired crystal phases of the prepared catalysts.It was found that the macroporous catalysts showed higher catalytic activities for soot combustion than that of the corresponding nanometric samples,and the macroporous ...
基金supported by the National Natural Science Committee of China-Liaoning Provincial People's Government Joint Fund(U1908204)National Natural Science Foundation of China(21876006,21976009,and 21961160743)+2 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions(IDHT20190503)Natural Science Foundation of Beijing Municipal Commission of Education(KM201710005004)Development Program for the Youth Outstanding-Notch Talent of Beijing Municipal Commission of Education(CIT&TCD201904019)。
文摘Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O.
文摘MgFe2O4 spinel ferrite and La0.6Pb0.2Mg0.2MnO3 perovskite nanopowders were synthesized by a combined sol-gel and self-combustion method and heat treatment. The morphological and structural characterization of the obtained powders has been performed with various techniques: X-ray diffraction (XRD), SEM observations, EDAX spectroscopy and BET analysis. The samples have been catalytically tested in flameless combustion reaction of acetone, benzene, propane and Pb free gasoline at atmospheric pressure. The results revealed a higher catalytic activity of La0.6Pb0.2Mg0.2 MnO3 perovskite than that of MgFe2O4 ferrite. This higher catalytic activity can be ascribed to smaller crystallite size (27 nm), larger surface area (8.5 m2/g) and the presence of manganese cations with variable valence (Mn3+ - Mn4+). The current results suggest that La0.6Pb0.2Mg0.2MnO3 perovskite is preferable to the Mg ferrite and that it can be a promising catalyst for acetone and propane combustion at low temperatures.
基金financially supported by the National Key Re-search and Development Plan (No. 2017YFC0211804)。
文摘Various manganese oxides(MnOx) prepared via citric acid solution combustion synthesis were applied for catalytic oxidation of benzene. The results showed the ratios of citric acid/manganese nitrate in synthesizing process positively affected the physicochemical properties of MnOx, e.g., BET(Brunauer-Emmett-Teller) surface area, porous structure, reducibility and so on, which were in close relationship with their catalytic performance. Of all the catalysts, the sample prepared at a citric acid/manganese nitrate ratio of 2:1(C2M1) displayed the best catalytic activity with T(90)(the temperature when 90% of benzene was catalytically oxidized) of 212 ℃. Further investigation showed that C2M1 was Mn2O3 with abundant nano-pores, the largest surface area and the proper ratio of surface Mn^4+/Mn^3+, resulting in preferable low-temperature reducibility and abundant surface active adsorbed oxygen species. The analysis results of the in-situ Fourier transform infrared spectroscopy(in-situ FTIR) revealed that the benzene was successively oxidized to phenolate, o-benzoquinone, small molecules(such as maleates, acetates, and vinyl), and finally transformed to CO2 and H2O.
文摘in this study, cerarnics honeycomb-supported ABO_3 perovskite type oxides were preparedby changing the composition of A and B site cations, and observed their activities for lean CH.oxidation. In the case of change in A site composition La_(0.3)Sr_(0.2)MnO_3 and La_(0.6)Sr_3MnO_3 is the mostactive catalysts for 1 v% CH_4 and 2 v% CH_4 respectively. But LaMn_(0.5)Co_(0.5)O_3 oxide is the best ac-tive catalyst for 1-2v% CH_4 among the oxides by changing B site compositions of LaBO_3 and su-perior to La_(0.3)Sr_(0.2)MnO_3 and La_(0.6)Sr_(0.4)MnO_3 catalysts.Adding trace Pd improved the activity and characteristics of space velocity for LaMn_(0.5)CO_(0.5)O_3and La_(0.3)Sr_(0.2)MnO_3 Although LaMn_(0.5)Co_(0.5)O_3 +Pd (0.03 wt%) was less active than the Pd catalyst,the activity was more than Pt catalyst at a conversion level below 90%.
文摘A technique for preparing perovskite type oxides was developed. By this technique, ultra fine particles of La 0.9 RE 0.1 MnO 3 (RE: Y, Ce, Pr, Sm, Gd,or Dy) with high surface area and single perovskite structure were prepared, and the series of La 0.9 RE 0.1 MnO 3 catalysts were studied experimentally. The so prepared ultra fine particles exhibites high catalytic activity for CH 4 total oxidation. The ultra fine particles of La 0.9 RE 0.1 MnO 3 (except for La 0.9 Pr 0.1 MnO 3) prepared by this method are thermally much more stable than LaMnO 3. Of the La 0.9 RE 0.1 MnO 3 series, La 0.9 Y 0.1 MnO 3 is most thermally stable, and La 0.9 Y 0.1 MnO 3 or La 0.9 Gd 0.1 MnO 3 (varies with calcination temperature) exhibits the highest catalytic activity for total oxidation of methane. The specific surface area of La 0.9 Y 0.1 MnO 3 calcined at 1000 ℃ reaches 14.9 m 2·g -1 , while the specific surface area of LaMnO 3 calcined at the same temperature is only 1.8 m 2·g -1 .
基金Project supported by National Natural Science Foundation of China (20773090)the National High Technology Research and Development Program of China (863 Program, 2006AA06Z347)the Youth Fund of Sichuan University (2008119)
文摘A series of Mn-Cu mixed oxide catalysts were prepared by precipitation method. The catalysts were characterized by N2 adsorp- tion-desorption, H2-TPR and XPS. When the loading ratio of manganese oxides to copper oxides was 8:2 or 7:3, the catalysts possessed better catalytic activity, and benzene was converted completely at 558 K. Results of H2-TPR showed that the loading of a small amount of copper oxides decreased the reduction temperature of catalysts. Results of XPS showed that the loading of a small amount of copper oxides increased the proportion of manganese and defective oxygen on the surface of catalysts, and stabilized manganese at higher oxidation state. And the catalyst with the loading ratio 7:3 was a little worse than 8:2, since the interaction between manganese oxides and copper oxides is too strong, copper oxides migrate to the surface of catalysts and manganese oxides in excess are immerged.
基金the financial support from the Natural Science Foundation of China (No. 21107096)Zhejiang Provincial Natural Science Foundation of China (No. Y14E080008)+1 种基金the Commission of Science and Technology of Zhejiang province (No. 2013C03021)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20133317110004)
文摘Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H_2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu-Mn-Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu-Mn-Ce catalyst, a portion of Cu and Mn species entered into the Ce O2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu-Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu-Mn and Cu-Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species.