期刊文献+
共找到34,439篇文章
< 1 2 250 >
每页显示 20 50 100
Critical approaches in the catalytic transformation of sugar isomerization and epimerization after Fischer-History,challenges,and prospects
1
作者 Da-Ming Gao Xun Zhang +5 位作者 Haichao Liu Hidemi Fujino Tingzhou Lei Fuan Sun Jie Zhu Taoli Huhe 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期435-453,共19页
The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and... The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date. 展开更多
关键词 Rare sugars ISOMERIZATION KETONIZATION EPIMERIZATION catalytic transformation
下载PDF
Development and Catalytic Cracking Performance of Ultrastable Y Zeolite Rich in Secondary Pores
2
作者 Li Jiaxing Wang Shengji +3 位作者 Sha Hao Wang Juan Zhou Lingping Wang Lixia 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期13-21,共9页
A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first t... A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity. 展开更多
关键词 GAS-PHASE ultra-stable ZEOLITE CATALYST catalytic cracking
下载PDF
Green synthesis of ZSM-5 using silica fume and catalytic co-cracking of lignin and plastics for production of monocyclic aromatics
3
作者 Hongbing Fu Yufei Gu +7 位作者 Tianhua Gao Fuwei Li Hengshuo Gu Hucheng Ge Yuke Liu Zhixia Li Hongfei Lin Jiangfei Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期92-105,共14页
ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles w... ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles with a particle size about 2.0 μm and weak acid-dominated with proper Brønsted(B)and Lewis(L)acid sites.The ZSM-5 was used for catalytic co-cracking of n-octane and guaiacol,lowdensity polyethylene(LDPE)and alkali lignin(AL)to enhance the production of benzene,toluene,ethylbenzene and xylene(BTEX).The most significant synergistic effect occurred at n-octane/guaiacol at 1:1 and LDPE/AL at 1:3,under the condition,the achieved BTEX selectivity were 24%and 33%(mass)higher than the calculated values(weighted average).The highest BTEX selectivity reached 88.5%,which was 3.7%and 54.2%higher than those from individual cracking LDPE and AL.The synthesized ZSM-5 exhibited superior catalytic performance compared to the commercial ZSM-5,indicating potential application prospect. 展开更多
关键词 Silica fume ZSM-5 catalytic co-cracking PLASTICS LIGNIN
下载PDF
HZSM-5 zeolites undergoing the high-temperature process for boosting the bimolecular reaction in n-heptane catalytic cracking
4
作者 Chenggong Song Zhenzhou Ma +6 位作者 Xu Hou Hao Zhou Huimin Qiao Changchang Tian Li Yin Baitang Jin Enxian Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期136-144,共9页
High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,... High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking. 展开更多
关键词 HZSM-5 N-HEPTANE catalytic cracking High-temperature treatment Extra-framework Al
下载PDF
Preparation and Electrochemical Performance Study of Catalytic Cracking Oil Slurry-based Porous Carbon Materials
5
作者 Liu Qi Zhao Gaiju +3 位作者 Liu Xingge Yu Hewei Sun Rongfeng Geng Wenguang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期34-45,共12页
Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industr... Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industry.In this study,oxygen-enriched activated carbon is prepared using a one-step KOH activation method with catalytic cracking oil slurry as the raw material.The as-prepared oil slurry-based activated carbon exhibits a high specific surface area of 2102 m^(2)/g,welldefined micropores with an average diameter of 2 nm,and a rich oxygen doping content of 32.97%.The electrochemical performance of the nitrogen-doped porous carbon is tested in a three-electrode system using a 6 mol/L KOH solution as the electrolyte.It achieves a specific capacitance of up to 230 F/g at a current density of 1 A/g.Moreover,the capacitance retention rate exceeds 89%after 10000 charge and discharge cycles,demonstrating excellent cycle stability.This method not only improves the utilization efficiency of industrial fuel waste but also reduces the production cost of supercapacitor electrode materials,thereby providing a simple and effective strategy for the resource utilization of catalytic cracking oil slurries. 展开更多
关键词 catalytic cracking slurry porous carbon SUPERCAPACITOR KOH activation
下载PDF
Early changes in corneal densitometry after FS-LASIK combined with accelerated corneal cross-linking for correction of high myopia
6
作者 Qing-Bao Wang Hong-Sheng Bi +3 位作者 Xiao-Fan Wang Hua Fan Li Li Peng Ji 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1307-1312,共6页
AIM:To observe the effects of femtosecond laserassisted excimer laser in situ keratomileusis combined with accelerated corneal cross-linking(FS-LASIK Xtra)on corneal densitometry after correcting for high myopia.METHO... AIM:To observe the effects of femtosecond laserassisted excimer laser in situ keratomileusis combined with accelerated corneal cross-linking(FS-LASIK Xtra)on corneal densitometry after correcting for high myopia.METHODS:In this prospectively study,130 patients underwent FS-LASIK or FS-LASIK Xtra for high myopia.Their right eyes were selected for inclusion in the study,of which 65 cases of 65 eyes in the FS-LASIK group,65 patients with 65 eyes in the FS-LASIK Xtra group.Patients were evaluated for corneal densitometry at 1,3,and 6mo postoperatively using Pentacam Scheimpflug imaging.RESULTS:Preoperative differences in corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups in different ranges were not statistically significant(P>0.05).Layer-by-layer analysis revealed statistically significant differences in the anterior(120μm),central,and total layer corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups at 1 and 3mo postoperatively(all P<0.05),the FS-LASIK Xtra group is higher than that of the FS-LASIK group.Analysis of different diameter ranges showed statistically significant differences between the FS-LASIK group and the FS-LASIK Xtra group at 1mo postoperatively in the ranges of 0–2,2–6,and 6–10 mm(both P<0.05);At 3mo postoperatively,the FS-LASIK Xtra group is higher than that of the FS-LASIK group in the ranges of 0–2 and 2–6 mm(P<0.05).At 6mo postoperatively,there were no statistically significant differences in corneal densitometry between the FS-LASIK group and the FS-LASIK Xtra group in different diameter ranges(all P>0.05).CONCLUSION:There is an increase in internal corneal densitometry during the early postoperative period after FS-LASIK Xtra for correction of high myopia.However,the densitometry values decreased to the level of conventional FS-LASIK at 6mo after surgery,with the most significant changes observed in the superficial central zone. 展开更多
关键词 femtosecond laser accelerated corneal cross-linking corneal densitometry high myopia femtosecond laser in situ keratomileusis
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction
7
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility Hydrogen evolution reaction
下载PDF
Catalytic Effect of Transition Metal Complexes of Triaminoguanidine on the Thermolysis of Energetic NC/DEGDN Composite
8
作者 Mohammed Dourari Ahmed Fouzi Tarchoun +4 位作者 Djalal Trache Amir Abdelaziz Roufaida Tiliouine Tessnim Barkat Weiqiang Pang 《火炸药学报》 EI CAS CSCD 北大核心 2024年第3期209-219,I0003,共12页
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ... The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants. 展开更多
关键词 triaminoguanidine transition metal complexes NITROCELLULOSE diethylene glycol dinitrate catalytic effect
下载PDF
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design
9
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts Water splitting Hydrogen production catalytic mechanism Synthesis technique Optimization design
下载PDF
Preparation of Modified UiO-66 Catalyst and Its Catalytic Performance for NH_(3)-SCR Denitration
10
作者 吴彦霞 梁海龙 +2 位作者 CHEN Yufeng HU Liming WANG Chunpeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期261-267,共7页
Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactiv... Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactivity of the samples was evaluated by the denitration activity evaluation system,and the UiO-66 and the regulator-modified UiO-66 were characterized by XRD,SEM,BET,FTIR,TG,NH_(3)-TPD,etc.,the effects of regulator types on the structure and properties of UiO-66 were investigated.The experimental results show that,after adding the modifier,the morphology of UiO-66 changes from irregular quadrilateral with serious agglomeration to particles with regular crystal shape and good dispersibility,and the crystal morphology of the catalyst is improved.In addition,after adding the modifier,UiO-66 has a larger specific surface area and stronger surface acidity,which optimizes the catalytic performance of UiO-66.The catalytic performance test results of NH_(3)-SCR show that the low-temperature activity of UiO-66 is poor,and it only shows a certain catalytic activity at higher temperatures.The catalytic activity of UiO-66 was significantly improved after adding the regulator.Among them,the UiO-66-HCl modified with hydrochloric acid had the best catalytic activity,and the denitration rate reached 70%when the denitration temperature was 380℃. 展开更多
关键词 UiO-66 catalyst catalytic denitration NH_(3)-SCR MODIFIED
下载PDF
Preparation of PrFe_(x)Co_(1-x)O_(3)/Mt catalyst and study on degradation of 2-hydroxybenzoic acid wastewater by catalytic wet peroxide oxidation
11
作者 Binxia Zhao Yijia Gao +3 位作者 Tiancheng Hun Xiaoxiao Fan Nan Shao Xiaoqian Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期286-297,共12页
In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnat... In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnation(D)method and solid-melting(G)method,respectively,with Pr(S)as the active component and Al-pillared montmorillonite as the carrier.The catalysts were applied to treat the 2-hydroxybenzoic acid(2-HA)-simulated wastewater by catalytic wet peroxide oxidation(CWPO)technique,and the chemical oxygen demand(COD)removal rate and the 2-HA degradation rate were used as indicators to evaluate the catalytic performance.The results of the experiment indicated that the solid-melting method was more conducive to preparing the catalyst when the Co/Fe molar ratio of 7:3 and the optimal structural properties of the catalysts were achieved.The influence of operating parameters,including reaction temperature,catalyst dosage,H_(2)O_(2)dosage,pH,and initial 2-HA concentration,were optimized for the degradation of 2-HA by CWPO.The results showed that 97.64%of 2-HA degradation and 75.23%of COD removal rate were achieved under more suitable experimental conditions.In addition,after the catalyst was used five times,the degradation rate of 2-HA could still reach 76.93%,which implied the high stability and reusability of the catalyst.The high catalytic activity of the catalyst was due to the doping of Co into PrFeO_(3),which could promote the generation of HO·,and the high stability could be attributed to the loading of Pr(S)onto Al-Mt,which reduced the leaching of reactive metals.The study of reaction mechanism and kinetics showed that the whole degradation process conformed to the pseudo-firstorder kinetic equation,and the Langmuir-Hinshelwood method was applied to demonstrate that catalysis was dominant in the degradation process. 展开更多
关键词 MONTMORILLONITE PEROVSKITE catalytic wet peroxide oxidation(CWPO) 2-Hydroxybenzoic acid
下载PDF
Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst
12
作者 Haining Fan Xuan-Wen Gao +3 位作者 Hailong Xu Yichun Ding Shi-Xue Dou Wen-Bin Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期305-326,I0008,共23页
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec... Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy. 展开更多
关键词 Energy storage and conversion Metal battery Sulfur battery Air battery catalytic effect Heterogeneous catalyst Homogeneous catalyst
下载PDF
Boosting the catalytic activity toward oxygen reduction via a heterostructure of porous iron oxide-decorated 2D NiO/NG nanosheets
13
作者 Kakali Maiti Matthew T.Curnan +2 位作者 Hyung Jun Kim Kyeounghak Kim Jeong Woo Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期669-681,I0016,共14页
As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,... As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,and straightforward surface functionalization.Therefore,they may replace Pt-based catalysts in oxygen reduction reaction(ORR)applications.Herein,a simple method is developed to design hierarchical nano-frame structures assembled via 2D NiO and N-doped graphene(NG)nanosheets.This procedure can yield nanostructures that satisfy the criteria correlated with improved electrocatalytic performance,such as large surface area,numerous undercoordinated atoms,and high defect densities.Further,porous NG nanosheet architectures,featuring NiO nanosheets densely coordinated with accessible holey Fe_(2)O_(3) moieties,can enhance mesoporosity and balance hydrophilicity.Such improvements can facilitate charge transport and expose formerly inaccessible reaction sites,maximizing active site density utilization.Density functional theory(DFT)calculations reveal favored O_(2) adsorption and dissociation on Fe_(2)O_(3) hybrid structures when supported by 2D NiO and NG nanomaterials,given 2D materials donated charge to Fe_(2)O_(3) active sites.Our systematic studies reveal that synergistic contributions are responsible for enriching the catalytic activity of Fe_(2)O_(3)@NiO/NG in alkaline media-encompassing internal voids and pores,unique hierarchical support structures,and concentrated N-dopant and bimetallic atomic interactions.Ultimately,this work expands the toolbox for designing and synthesizing highly efficient 2D/2D shelled functional nanomaterials with transition metals,endeavoring to benefit energy conversion and related ORR applications. 展开更多
关键词 N-doped graphene Holey Fe_(2)O_(3)nanocrystals NiO nanosheets High catalytic performance ORR
下载PDF
Biocatalytic enhancement of laccase immobilized on ZnFe_(2)O_(4) nanoparticles and its application for degradation of textile dyes
14
作者 Yuhang Wei Qingpeng Zhu +3 位作者 Weiwei Xie Xinyue Wang Song Li Zhiming Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期216-223,共8页
Efficient and convenient treatment of industrial dyeing wastewater is of great significance to guarantee human and animal health.This work presented the enhanced catalytic activity at pH 3.0 of laccase immobilized on ... Efficient and convenient treatment of industrial dyeing wastewater is of great significance to guarantee human and animal health.This work presented the enhanced catalytic activity at pH 3.0 of laccase immobilized on amino-functionalized ZnFe_(2)O_(4) nanoparticles(ZnFe_(2)O_(4)-laccase)and its application for the degradation of textile dyes.Due to the existence of a large number of oxygen vacancies on the surface of the ZnFe_(2)O_(4) nanoparticles,negative ions accumulated on the magnetic carriers,which resulted in a harsh optimal pH value of the ZnFe_(2)O_(4)-laccase.Laccase activity assays revealed that the ZnFe_(2)O_(4)-laccase possessed superior pH and thermal stabilities,excellent reusability,and noticeable organic solvent tolerance.Meanwhile,the ZnFe_(2)O_(4) laccase presented efficient and sustainable degradation of high concentrations of textile dyes.The initial decoloration efficiencies of malachite green(MG),brilliant green(BG),azophloxine,crystal violet(CV),reactive blue 19(RB19),and procion red MX-5B were approximately 99.1%,95.0%,93.3%,87.4%,86.1%,and 85.3%,respectively.After 10 consecutive reuses,the degradation rates of the textile dyes still maintained about 98.2%,92.5%,83.2%,81.5%,79.8%and 65.9%,respectively.The excellent dye degradation properties indicate that the ZnFe_(2)O_(4)-laccase has a technical application in high concentrations of dyestuff treatment. 展开更多
关键词 ZnFe_(2)O_(4)-laccase catalytic activity Stability and reusability Degradation of textile dye
下载PDF
Enhanced bifunctional oxygen electrochemical catalytic performance using La-doped CoFe_(2)O_(4)spinel supported by 3D-G for Zn-air batteries
15
作者 Yinggang Sun Tingwei Zhang +5 位作者 Peng Sun Jigang Wang Wenjie Duan Yanqiong Zhuang Likai Wang Zhongfang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期778-788,共11页
The preparation of bifunctional catalysts for oxygen reduction(ORR)and oxygen evolution(OER)is crucial for Zn-air batteries.Here,we report a La doped CoFe_(2)O_(4) spinel catalyst supported on threedimensional graphen... The preparation of bifunctional catalysts for oxygen reduction(ORR)and oxygen evolution(OER)is crucial for Zn-air batteries.Here,we report a La doped CoFe_(2)O_(4) spinel catalyst supported on threedimensional graphene(3D-G),where La can facilitate electron transfer from Co to Fe,leading to increased electron cloud density in Fe and improved catalytic performance.The redshift of the G peak in the Raman spectra indicates the interaction between theπbond of 3D-G and d orbitals in La_(0.2)CoFe_(1.8)O_(4).La_(0.2)CoFe_(1.8)/3D-G exhibits superior ORR performance(E_(1/2)=0.86 V vs.RHE)and OER performance(E_(j=10)=1.55 V vs.RHE)to CoFe_(2)O_(4)/3D-G(E_(1/2)=0.831 V vs.RHE,E_(j=10)=1.603 V vs.RHE).Furthermore,it demonstrates excellent bifunctional oxygen catalytic performance while maintaining high power density and stability in liquid zinc-air batteries(ZABs)and flexible ZABs(F-ZABs).This work presents a viable strategy for utilizing rare earth element doped spinels to enhance oxygen catalyst and ZABs performance. 展开更多
关键词 Zn-air batteries Electrocatalysts La_(0.2)CoFe_(1.8)/3D-G Electron pump Bifunctional oxygen catalytic performance
下载PDF
Target-induced Trivalent G-quadruplex/hemin DNAzyme for Colorimetric Detection of Hg^(2+) Based on an Exonuclease III Assisted Catalytic Hairpin Assembly
16
作者 Zhenghua LIU Zhonghai LI 《Agricultural Biotechnology》 2024年第1期51-57,共7页
Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly fo... Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly formation of a trivalent G-quadruplex/hemin DNAzyme for colorimetric detection of Hg^(2+).A hairpin DNA(Hr)was designed with thymine-Hg^(2+)-thymine pairs that catalyzed by Exo III is prompted to happen upon binding Hg^(2+).A released DNA fragment triggers the catalytic assembly of other three hairpins(H1,H2,and H3)to form many trivalent G-quadruplex/hemin DNA enzymes for signal output.The developed sensor shows a dynamic range from 2 pM to 2μM,with an impressively low detection limit of 0.32 pM for Hg^(2+)detection.Such a sensor also has good selectivity toward Hg^(2+)detection in the presence of other common metal ions.This strategy shows the great potential for visual detection with portable type. 展开更多
关键词 G-quadruplex/hemin DNAzyme Multivalence catalytic hairpin assembly Exonuclease III Signal amplification Colorimetric detection
下载PDF
Understanding the Pt-like Catalytic Activity of Transition Metal Carbide Ta4C_(3) for I_(3)^(-) Reduction
17
作者 Jing Li Rui Yu Yingchun Li 《材料科学与工程(中英文A版)》 2024年第1期18-25,共8页
This paper attempts to understand the Pt-like catalytic activity of transition metal carbide Ta4C_(3) for IRR(I_(3)^(-)reduction reaction)based on the correlation of adsorption energy to d-band center(εd).Ta4C_(3) wa... This paper attempts to understand the Pt-like catalytic activity of transition metal carbide Ta4C_(3) for IRR(I_(3)^(-)reduction reaction)based on the correlation of adsorption energy to d-band center(εd).Ta4C_(3) was prepared by carbothermal reduction method with a template.Its photoelectrochemical properties were investigated as a CE(counter electrode)in DSSC(dye-sensitized solar cell).Its surface electronic structures,including DOS(density of state)andεd,and adsorption energy were computed by first-principle DFT(density functional theory).In TMC(transition metal carbide)Ta4C_(3),the interaction between Ta and C atoms makes the d-band of Ta broaden and results in the downward shift of itsεd.A moderate absorption energy corresponding to theεd is achieved,which is the nature of the Pt-like catalytic activity of Ta4C_(3).Appropriate change of adsorption energy by adjustingεd is a promising strategy to improve catalytic activity.This work is of great significance to the fundamental and application researches. 展开更多
关键词 Pt-like catalytic activity Ta4C_(3) DOS d-band center absorption energy.
下载PDF
New insights into ATR inhibition in muscle invasive bladder cancer:The role of apolipoprotein B mRNA editing catalytic subunit 3B
18
作者 HYUNHO KIM UIJU CHO +5 位作者 SOOK HEE HONG HYUNG SOON PARK IN-HO KIM HO JUNG AN BYOUNG YONG SHIM JIN HYOUNG KANG 《Oncology Research》 SCIE 2024年第6期1021-1030,共10页
Background:Apolipoprotein B mRNA editing catalytic polypeptide(APOBEC),an endogenous mutator,induces DNA damage and activates the ataxia telangiectasia and Rad3-related(ATR)-checkpoint kinase 1(Chk1)pathway.Although c... Background:Apolipoprotein B mRNA editing catalytic polypeptide(APOBEC),an endogenous mutator,induces DNA damage and activates the ataxia telangiectasia and Rad3-related(ATR)-checkpoint kinase 1(Chk1)pathway.Although cisplatin-based therapy is the mainstay for muscle-invasive bladder cancer(MIBC),it has a poor survival rate.Therefore,this study aimed to evaluate the efficacy of an ATR inhibitor combined with cisplatin in the treatment of APOBEC catalytic subunit 3B(APOBEC3B)expressing MIBC.Methods:Immunohistochemical staining was performed to analyze an association between APOBEC3B and ATR in patients with MIBC.The APOBEC3B expression in MIBC cell lines was assessed using real-time polymerase chain reaction and western blot analysis.Western blot analysis was performed to confirm differences in phosphorylated Chk1(pChk1)expression according to the APOBEC3B expression.Cell viability and apoptosis analyses were performed to examine the anti-tumor activity of ATR inhibitors combined with cisplatin.Results:There was a significant association between APOBEC3B and ATR expression in the tumor tissues obtained from patients with MIBC.Cells with higher APOBEC3B expression showed higher pChk1 expression than cells expressing low APOBEC3B levels.Combination treatment of ATR inhibitor and cisplatin inhibited cell growth in MIBC cells with a higher APOBEC3B expression.Compared to cisplatin single treatment,combination treatment induced more apoptotic cell death in the cells with higher APOBEC3B expression.Conclusion:Our study shows that APOBEC3B’s higher expression status can enhance the sensitivity of MIBC to cisplatin upon ATR inhibition.This result provides new insight into appropriate patient selection for the effective application of ATR inhibitors in MIBC. 展开更多
关键词 Apolipoprotein B mRNA editing catalytic polypeptide(APOBEC) Ataxia telangiectasia and Rad3-related(ATR) Bladder cancer DNA damage response DNA replication stress
下载PDF
Research Advances on Cyclohexane Catalytic Cracking
19
作者 Weijiang Li Jingxi Zhang 《Expert Review of Chinese Chemical》 2024年第1期21-26,共6页
This article elaborates on the research achievements of domestic and foreign researchers in exploring the conversion pathways and reaction mechanisms of cyclohexane catalytic cracking in recent years.It analyzes the e... This article elaborates on the research achievements of domestic and foreign researchers in exploring the conversion pathways and reaction mechanisms of cyclohexane catalytic cracking in recent years.It analyzes the effects of different catalysts and process conditions on the conversion laws of cyclohexane,summarizes the conversion pathways of cyclohexane,and discusses the chemical mechanisms of several main reactions of cyclohexane in catalytic cracking,such as cracking,isomerization,hydrogen transfer,dehydrogenation,and alkylation;Several advanced characterization methods and common research methods were listed,and prospects for future development in this field were proposed based on existing research. 展开更多
关键词 catalytic cracking catalyst CYCLOALKANES CYCLOHEXANE
下载PDF
Structure and Catalytic Behaviour of Saponite and Its Cross-Linking Product
20
作者 Jiang Dazhen, Liu Ziyang, Sun Tie and Ren Beiyuan (Department of Chemistry, Jilin University, Changchun)Min Enze and He Mingyuan (Research Institute of Petroleum Processing, Beijing) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1991年第3期156-161,共6页
Synthetic saponites have been intercalated with hydroxyl aluminium oligomers and characterized with several techniques. The basal 001 peak of the pillared saponite (PS) is 1. 8 nm. The amount of the aluminium in the t... Synthetic saponites have been intercalated with hydroxyl aluminium oligomers and characterized with several techniques. The basal 001 peak of the pillared saponite (PS) is 1. 8 nm. The amount of the aluminium in the tctrahedral sheet is correlative with cross-linking density. The sheet-to-pillar linkage mode may be Si-O-AlpⅥ. The acid sites in pillared saponite may locate either at surface of clay or at that of pillar. The cumene conversion is relative to accessible acid sites on the surface of PS. The pillar density in the PS has an effect on the pore structure which is correlative with shape selectivity during the reaction between ethanol and ammonia. 展开更多
关键词 SAPONITE cross-linking MAS-NMR CATALYSIS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部