The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a fou...The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.展开更多
With the increasing awareness of environmental protection, people’s concern of pollution issues arising. Vehicles, as the most important means of transportation, its exhaust emission has received considerable attenti...With the increasing awareness of environmental protection, people’s concern of pollution issues arising. Vehicles, as the most important means of transportation, its exhaust emission has received considerable attention. The catalytic converter is able to purify harmful substances in exhaust gas. The absolute content of precious metals in the catalytic converter dominates the exhaust gas purification effect. Accurate detection of precious metal content is of great significance for controlling the cost of catalysts, ensuring catalytic performance and recovering precious metals from spent catalysts. We herein summarized several instruments for precious metals content exploration, such as X-ray fluorescence spectrometer (XRF), atomic absorption spectrometer (AAS), inductively coupled plasma emission spectrometer (ICP) and spectrophotometer. In this thesis, the feasibility of using various devices for characterizing precious metal content in catalytic converters is analyzed and their strengths or weaknesses are elaborated.展开更多
The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction per...The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction performances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal.展开更多
The alkylation mechanism catalyzed by an ionic liquid (as a Lewis acid) may be different from the traditional alkylation mechanism catalyzed by Br nsted acid,especially as their initiation steps are still not clear....The alkylation mechanism catalyzed by an ionic liquid (as a Lewis acid) may be different from the traditional alkylation mechanism catalyzed by Br nsted acid,especially as their initiation steps are still not clear.In this paper,an isotope exchange method is used to investigate the catalytic mechanism of AlCl 3 /butyl-methyl-imidazolium chloride ionic liquid in the alkylation of benzene with 1-dodecene.The proposed catalytic mechanism was confirmed by analysis of ionic liquid before and after reaction and of the alkylation products of deuterated benzene (C 6 D 6) with 1-dodecene.The proposed mechanism consists of the equilibrium reaction between [Al 2 Cl 7 ] +H + and [AlHCl 3 ] + +[AlCl 4 ],in which the Br nsted acid [AlHCl 3 ] + is supplied by the reaction of 2-H on the imidazolium ring and [Al 2 Cl 7 ].The alkylation reaction is initiated by the Br nsted acid [AlHCl 3 ] + which reacts with 1-dodecene to form a carbonium ion,then the carbonium ion reacts with benzene to form an unstable σ complex,leading to the formation of 2-phenyldodecane.展开更多
The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ...The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ((NH4)2S2O8) with nitrilo triacetic acid as an activator in microemulsion and H2SO4 medium. Under optimum conditions, there was the linearity of the calibration curve in the concentration range from 0 to 20 μg/L Au(Ⅲ) at 520 nm. The relative standard deviation was 3.0% with a correlation coefficient of 0.9986. The detection limit achieved was 9.75 × 10^-5 μg/mL. A new method using a column packed with sulfhydryl dextrose gel (SDG) as a solid-phase extractant has been developed for the preconcentration and separation of Au(Ⅲ) ions. The method has been applied to the determination of trace gold with satisfactory results.展开更多
A highly sensitive and selective catalytic kinetic spectrophotometric method for the determination of Cu(Ⅱ) is proposed. It is based on the catalytic effect of Cu(Ⅱ) on the oxidation of glutathione(GSH) by potassium...A highly sensitive and selective catalytic kinetic spectrophotometric method for the determination of Cu(Ⅱ) is proposed. It is based on the catalytic effect of Cu(Ⅱ) on the oxidation of glutathione(GSH) by potassium hexacyanoferrate(Ⅲ) in acidic medium at 25.0℃. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of oxidant at 420 nm using the fix-time method. Under the optimum conditions, the proposed method allows the determination of Cu(Ⅱ) in a range of 0-35.0 ng m L^(-1) with good precision and accuracy and the limit of detection is down to 0.04 ng m L^(-1). The relative standard deviation(RSD) is 1.02%. The reaction orders with respect to each reagent are found to be 1, 1/2, and 1/2 for potassium hexacyanoferrate(Ⅲ), glutathione and Cu(Ⅱ) respectively. On the basis of these values, the rate equation is obtained and the possible mechanism is established. Moreover, few anions and cations can interfere with the determination of Cu(Ⅱ). The new proposed method can be successfully used to the determination of Cu(Ⅱ) in fresh water samples and seawater samples. It is found that the proposed method has fairly good selectivity, high sensitivity, good repeatability, simplicity and rapidity.展开更多
Three kinds of Pt/alumina catalysts were prepared by impregnation-hydrogen reduction, impregnation-hydrazine reduction and electroless plating methods. Their differences in the structures, specific areas and particle ...Three kinds of Pt/alumina catalysts were prepared by impregnation-hydrogen reduction, impregnation-hydrazine reduction and electroless plating methods. Their differences in the structures, specific areas and particle sizes were characterized by XRD, BET and TEM, respectively. Furthermore, their catalytic activities for the hydrogen iodide (HI) decomposition were evaluated in a fixed bed reactor. The results show that the catalyst 5%Pt/Al2O3 prepared by the electroless plating has the optimum catalytic properties for HI decomposition owing to the high dispersion of the platinum nano-particles (〈5 nm) on the alumina supports.展开更多
In the H2SO4 medium and in the presence of dodecylbenzene sulfonic acid sodiumsalt (DBS), dimethyl yellow (R) could emit strong and stable solid substrate room temperature phosphorescence (RTP) on filter paper. And Na...In the H2SO4 medium and in the presence of dodecylbenzene sulfonic acid sodiumsalt (DBS), dimethyl yellow (R) could emit strong and stable solid substrate room temperature phosphorescence (RTP) on filter paper. And NaIO4 could oxidize R to cause the RTP quenching. Arsenic(V) could catalyze the reaction of NaIO4 oxidizing R, which caused the RTP sharply quenching. The reducing value of phosphorescence intensity (ΔIp) for the system with DBS is 3.3 times higher than that without DBS. Moreover, the ΔIp is proportional to the concentration of As(V). Based on the facts above, a new RTP quenching method for the determination of trace As(V) has been established.展开更多
Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loa...Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loaded by electroplating.The electric heating method,as a new method,electrifies the carbon fiber directly by using its conductivity.The morphology and structure of CNTs were characterized by SEM and TEM,and the surface properties of carbon fibers before and after the growth of CNT were characterized by Raman spectroscopy.The experimental results show that the electric heating method is a new method to produce CNT,and can grow a large number of CNTs in a short time,the crystallization degree and surface average crystallite size of carbon fiber increased after the growth of CNT on it.In addition,electroplating loading catalyst can also be used as an ideal loading way,which can control the number,shape,and distribution of nickel particles by controlling the plating time.展开更多
In this paper, we conduct research on the high-strength coating preparation methodology based on acid catalytic and Sol-Gel method. This method has been widely used in the preparation of various functional thin film, ...In this paper, we conduct research on the high-strength coating preparation methodology based on acid catalytic and Sol-Gel method. This method has been widely used in the preparation of various functional thin film, film and protective film structure, etc. As a result of sol gel process continuously broaden the application field, this method has been more and more get the favor of people. Compared with other traditional preparation methods of inorganic material, sol-gel process has many characteristics. To adjust the solution acidity and add a small amount of acid or alkali can have the effect of" catalyst, its reaction process on sol to get and gel structure may also be affected. Our research analyze the topic theoretically and numerically which is meaningful.展开更多
In this thesis a reviwe is presented for the advances of catalytic spec trophotometric method, three new catalytic reaction systems were presented, and its rela live catalytic spectrophotometric methods have been esta...In this thesis a reviwe is presented for the advances of catalytic spec trophotometric method, three new catalytic reaction systems were presented, and its rela live catalytic spectrophotometric methods have been established by flow injection tech nique. Particulary the relative chemometric methods and theories were used in the field of kinetic - catalytic analysis, in order to solve the problems of multicomponents analysis.展开更多
The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were char...The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by transmission electron microscopy (TEM), BET equation, X-ray diffraction (XRD), and the corresponding selected area electron diffraction (SAED). The catalytic effect of Co nanoparticles on the decomposition of ammonium perchlorate (AP) was investigated by differential thermal analyzer (DTA). Compared with the thermal decomposition of pure AP, the addition of Co nanoparticles (2%-10%, by mass) decreases the decomposition temperature of AP by 145.01-155.72℃. Compared with Co3O4 nano-particles and microsized Co particles, the catalytic effect of Co nanoparticles for AP is stronger. Such effect is attributed to the large specific surface area and its interaction of Co with decomposition intermediate gases. The present work provides useful information for the application of Co nanoparficles in the AP-based propellant.展开更多
Supported and colloidal single‐atom catalysts(SACs),which possess excellent catalytic properties,are particularly important in both fundamental studies and practical applications.The progress made in the preparation ...Supported and colloidal single‐atom catalysts(SACs),which possess excellent catalytic properties,are particularly important in both fundamental studies and practical applications.The progress made in the preparation methods,characterization,catalytic performances and mechanisms of SACs anchored to metal oxides,two‐dimensional materials and the surface of metal nanoclusters(NCs)are reviewed.The different techniques for SAC fabrication,including conventional solution methods based on co‐precipitation,incipient wetness co‐impregnation,and the chemical vapor deposition method,as well as the newer atom layer deposition(ALD)and galvanic replacement methods,are summarized.The main results from experimental and theoretical studies of various catalytic reactions over SACs,including oxidation reactions,hydrogenation,water gas shift,photocatalytic H2evolution and electrochemical reactions,are also discussed.Moreover,the electronic properties of the single atoms and their interactions with the supports are described to assist in understanding the origin of the high catalytic activity and selectivity of SACs.Finally,possible future research directions of SACs and their applications are proposed.展开更多
LaMnO3was prepared by citrate sol‐gel,coprecipitation,hard template,and hydrothermal methods,respectively,and its catalytic performance for the combustion of vinyl chloride was investigated.N2adsorption‐desorption,X...LaMnO3was prepared by citrate sol‐gel,coprecipitation,hard template,and hydrothermal methods,respectively,and its catalytic performance for the combustion of vinyl chloride was investigated.N2adsorption‐desorption,X‐ray diffraction(XRD),Raman spectroscopy(Raman),O2temperature programmed desorption(O2‐TPD),H2temperature programmed surface reaction(H2‐TPR)and X‐ray photoelectron spectroscopy(XPS)were used to characterize the physicochemical properties of the LaMnO3samples.The preparation methods had obvious effects on the distribution of oxygen and manganese species on the catalyst surface.The reaction followed the suprafacial mechanism;the activity corresponded with the high amount of Mn4+and adsorbed oxygen species.LaMnO3prepared by the citrate sol‐gel method had the best performance for vinyl chloride combustion with T90of182°C.The optimal activity was attributed to the improved redox capability of Mn4+/Mn3+.More available adsorbed oxygen and Mn4+species on the surface were mainly responsible for the remarkable enhancement of the catalytic activity.展开更多
Fixed-bed reactors for the partial oxidation of methane to produce synthetic gas still pose hotspot problems. An alternative reactor, which is known as the shell-and-tube-typed microreactor, has been developed to reso...Fixed-bed reactors for the partial oxidation of methane to produce synthetic gas still pose hotspot problems. An alternative reactor, which is known as the shell-and-tube-typed microreactor, has been developed to resolve these problems. The microreactor consists of a 1 cm outside-diameter, 0.8 cm insidediameter and 11 cm length tube, and a 1.8 cm inside-diameter shell. The tube is made of dense alumina and the shell is made of quartz. Two different methods dip and spray coating were performed to line the tube side with the LaNixOy catalyst. Combustion and reforming reactions take place simultaneously in this reactor. Methane is oxidized in the tube side to produce flue gases (CO2 and H2O) which flow counter-currently and react with the remaining methane in the shell side to yield synthesis gas. The methane conversion using the higher-loading catalyst spray-coated tube reaches 97% at 700 ℃, whereas that using the lower-loading catalyst dip-coated tube reaches only 7.78% because of poor adhesion between the catalyst film and the alumina support. The turnover frequencies (TOFs) using the catalyst spray-and dip-coated tubes are 5.75×10^-5 and 2.24×10^-5 mol/gcat· s, respectively. The catalyst spray-coated at 900 ℃ provides better performance than that at 1250 ℃ because sintering reduces the surface-area. The hydrogen to carbon monoxide ratio produced by the spray-coated catalyst is greater than the stoichiometric ratio, which is caused by carbon deposition through methane cracking or the Boudouard reaction.展开更多
The Ce-Zr-La-O solid solution was prepared by the sol-gel method. Thestructure and the redox behavior of Ce-Zr-La-O solid solution and CuO/Ce-Zr-La-O catalysts wereinvestigated by using XRD, Raman and TPR techniques. ...The Ce-Zr-La-O solid solution was prepared by the sol-gel method. Thestructure and the redox behavior of Ce-Zr-La-O solid solution and CuO/Ce-Zr-La-O catalysts wereinvestigated by using XRD, Raman and TPR techniques. The result shows that the reduction capabilityof Ce_(0.7)Zr_(0.3-y)La_yO solid solution is related to content of La. Appropriate content of La canenhance the redox capability of the solid solution. The oxidation activity of the CuO (6 percent)/Ce_(0.7)Zr_(0.15)La_(0.15)O catalyst is the highest. CuO, which finely dispersed and interacted withthe support, is the site of oxidation activity.展开更多
A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the n...A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.展开更多
We synthesized a mesoporous film based on TiO2-reduced graphene oxide(RGO)hybrids using a one-step vapor-thermal method without the need for an additional annealing process.The vapor-thermally prepared TiO2-graphene h...We synthesized a mesoporous film based on TiO2-reduced graphene oxide(RGO)hybrids using a one-step vapor-thermal method without the need for an additional annealing process.The vapor-thermally prepared TiO2-graphene hybrid(VTH)features unique structures with an ultra-large specific surface area of^260 m^2 g^-1 and low aggregation,giving rise to enhanced light harvesting and increased charge generation and separation efficiency.It was observed that a mesoporous film with uniform pore distribution is simultaneously obtained during the VTH growth process.When a 5.0 wt%RGO VTH film was used as the active layer in photocatalysis,the highest photocatalytic activity for degradation of methyl orange was achieved.For another,when a 0.75 wt%RGO VTH film was used as the photoanode in a dye-sensitized solar cell,the power conversion efficiency reached 7.58%,which represents an increase of 73.1%compared to a solar cell using an a photoanode of pure TiO2 synthesized by a traditional solvothermal method.It is expected that this facile method for the synthesis of TiO2/graphene hybrid mesoporous films will be useful in practical applications for preparing other metal oxide/graphene hybrids with ultra-high photocatalytic activity and photovoltaic performance.展开更多
CoO/CeOcomposites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcinat...CoO/CeOcomposites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcination in Natmosphere. The samples were characterized by various means such as nitrogen adsorption/desorption, X-ray diffraction(XRD), Htemperature-programmed reduction(H-TPR),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). Results showed that the modified catalyst had the mesoporous structure, comparatively higher amount of surface oxygen and larger oxygen vacancies than others. As a result of the structure and surface composition merits, a high methane combustion conversion(50%) could be obtained at a low temperature of 262 °C for the modified CoO/CeOcomposites catalysts. The experimental results demonstrated that ultrasonic impregnation treatment combined with the Nthermal treatment prior to calcination in air had a promising application for preparation of CoO/CeOcomposites catalysts for low-temperature catalytic combustion of methane.展开更多
基金funded by the Natural Science Foundation of Jiangsu Province(BK20210252)。
文摘The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.
文摘With the increasing awareness of environmental protection, people’s concern of pollution issues arising. Vehicles, as the most important means of transportation, its exhaust emission has received considerable attention. The catalytic converter is able to purify harmful substances in exhaust gas. The absolute content of precious metals in the catalytic converter dominates the exhaust gas purification effect. Accurate detection of precious metal content is of great significance for controlling the cost of catalysts, ensuring catalytic performance and recovering precious metals from spent catalysts. We herein summarized several instruments for precious metals content exploration, such as X-ray fluorescence spectrometer (XRF), atomic absorption spectrometer (AAS), inductively coupled plasma emission spectrometer (ICP) and spectrophotometer. In this thesis, the feasibility of using various devices for characterizing precious metal content in catalytic converters is analyzed and their strengths or weaknesses are elaborated.
基金supported by the Jiangxi Provincial Department of Education
文摘The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction performances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal.
基金financial support from the National Natural Science Foundation of China (NSFC,2052010)
文摘The alkylation mechanism catalyzed by an ionic liquid (as a Lewis acid) may be different from the traditional alkylation mechanism catalyzed by Br nsted acid,especially as their initiation steps are still not clear.In this paper,an isotope exchange method is used to investigate the catalytic mechanism of AlCl 3 /butyl-methyl-imidazolium chloride ionic liquid in the alkylation of benzene with 1-dodecene.The proposed catalytic mechanism was confirmed by analysis of ionic liquid before and after reaction and of the alkylation products of deuterated benzene (C 6 D 6) with 1-dodecene.The proposed mechanism consists of the equilibrium reaction between [Al 2 Cl 7 ] +H + and [AlHCl 3 ] + +[AlCl 4 ],in which the Br nsted acid [AlHCl 3 ] + is supplied by the reaction of 2-H on the imidazolium ring and [Al 2 Cl 7 ].The alkylation reaction is initiated by the Br nsted acid [AlHCl 3 ] + which reacts with 1-dodecene to form a carbonium ion,then the carbonium ion reacts with benzene to form an unstable σ complex,leading to the formation of 2-phenyldodecane.
文摘The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ((NH4)2S2O8) with nitrilo triacetic acid as an activator in microemulsion and H2SO4 medium. Under optimum conditions, there was the linearity of the calibration curve in the concentration range from 0 to 20 μg/L Au(Ⅲ) at 520 nm. The relative standard deviation was 3.0% with a correlation coefficient of 0.9986. The detection limit achieved was 9.75 × 10^-5 μg/mL. A new method using a column packed with sulfhydryl dextrose gel (SDG) as a solid-phase extractant has been developed for the preconcentration and separation of Au(Ⅲ) ions. The method has been applied to the determination of trace gold with satisfactory results.
文摘A highly sensitive and selective catalytic kinetic spectrophotometric method for the determination of Cu(Ⅱ) is proposed. It is based on the catalytic effect of Cu(Ⅱ) on the oxidation of glutathione(GSH) by potassium hexacyanoferrate(Ⅲ) in acidic medium at 25.0℃. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of oxidant at 420 nm using the fix-time method. Under the optimum conditions, the proposed method allows the determination of Cu(Ⅱ) in a range of 0-35.0 ng m L^(-1) with good precision and accuracy and the limit of detection is down to 0.04 ng m L^(-1). The relative standard deviation(RSD) is 1.02%. The reaction orders with respect to each reagent are found to be 1, 1/2, and 1/2 for potassium hexacyanoferrate(Ⅲ), glutathione and Cu(Ⅱ) respectively. On the basis of these values, the rate equation is obtained and the possible mechanism is established. Moreover, few anions and cations can interfere with the determination of Cu(Ⅱ). The new proposed method can be successfully used to the determination of Cu(Ⅱ) in fresh water samples and seawater samples. It is found that the proposed method has fairly good selectivity, high sensitivity, good repeatability, simplicity and rapidity.
基金the Foundational Research Project of National Defence(No.A1420080145)for thefinancial support.
文摘Three kinds of Pt/alumina catalysts were prepared by impregnation-hydrogen reduction, impregnation-hydrazine reduction and electroless plating methods. Their differences in the structures, specific areas and particle sizes were characterized by XRD, BET and TEM, respectively. Furthermore, their catalytic activities for the hydrogen iodide (HI) decomposition were evaluated in a fixed bed reactor. The results show that the catalyst 5%Pt/Al2O3 prepared by the electroless plating has the optimum catalytic properties for HI decomposition owing to the high dispersion of the platinum nano-particles (〈5 nm) on the alumina supports.
文摘In the H2SO4 medium and in the presence of dodecylbenzene sulfonic acid sodiumsalt (DBS), dimethyl yellow (R) could emit strong and stable solid substrate room temperature phosphorescence (RTP) on filter paper. And NaIO4 could oxidize R to cause the RTP quenching. Arsenic(V) could catalyze the reaction of NaIO4 oxidizing R, which caused the RTP sharply quenching. The reducing value of phosphorescence intensity (ΔIp) for the system with DBS is 3.3 times higher than that without DBS. Moreover, the ΔIp is proportional to the concentration of As(V). Based on the facts above, a new RTP quenching method for the determination of trace As(V) has been established.
基金Funded by the National Natural Science Foundation of China(No.51165006)the Universities in Hubei Province Outstanding Young Scientific and Technological Innovation Team(No.T201626)
文摘Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loaded by electroplating.The electric heating method,as a new method,electrifies the carbon fiber directly by using its conductivity.The morphology and structure of CNTs were characterized by SEM and TEM,and the surface properties of carbon fibers before and after the growth of CNT were characterized by Raman spectroscopy.The experimental results show that the electric heating method is a new method to produce CNT,and can grow a large number of CNTs in a short time,the crystallization degree and surface average crystallite size of carbon fiber increased after the growth of CNT on it.In addition,electroplating loading catalyst can also be used as an ideal loading way,which can control the number,shape,and distribution of nickel particles by controlling the plating time.
文摘In this paper, we conduct research on the high-strength coating preparation methodology based on acid catalytic and Sol-Gel method. This method has been widely used in the preparation of various functional thin film, film and protective film structure, etc. As a result of sol gel process continuously broaden the application field, this method has been more and more get the favor of people. Compared with other traditional preparation methods of inorganic material, sol-gel process has many characteristics. To adjust the solution acidity and add a small amount of acid or alkali can have the effect of" catalyst, its reaction process on sol to get and gel structure may also be affected. Our research analyze the topic theoretically and numerically which is meaningful.
文摘In this thesis a reviwe is presented for the advances of catalytic spec trophotometric method, three new catalytic reaction systems were presented, and its rela live catalytic spectrophotometric methods have been established by flow injection tech nique. Particulary the relative chemometric methods and theories were used in the field of kinetic - catalytic analysis, in order to solve the problems of multicomponents analysis.
基金Supported by the National Natural Science Foundation of China (50306008, 50602024).
文摘The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by transmission electron microscopy (TEM), BET equation, X-ray diffraction (XRD), and the corresponding selected area electron diffraction (SAED). The catalytic effect of Co nanoparticles on the decomposition of ammonium perchlorate (AP) was investigated by differential thermal analyzer (DTA). Compared with the thermal decomposition of pure AP, the addition of Co nanoparticles (2%-10%, by mass) decreases the decomposition temperature of AP by 145.01-155.72℃. Compared with Co3O4 nano-particles and microsized Co particles, the catalytic effect of Co nanoparticles for AP is stronger. Such effect is attributed to the large specific surface area and its interaction of Co with decomposition intermediate gases. The present work provides useful information for the application of Co nanoparficles in the AP-based propellant.
基金supported by the National Natural Science Foundation of China(51472184 and 51472185)the Science and Technology Support Program of Hubei Province(2013BHE003)the Program for Innovative Teams of Outstanding Young and Middle-Aged Researchers in the Higher Education Institutions of Hubei Province(T201602)~~
文摘Supported and colloidal single‐atom catalysts(SACs),which possess excellent catalytic properties,are particularly important in both fundamental studies and practical applications.The progress made in the preparation methods,characterization,catalytic performances and mechanisms of SACs anchored to metal oxides,two‐dimensional materials and the surface of metal nanoclusters(NCs)are reviewed.The different techniques for SAC fabrication,including conventional solution methods based on co‐precipitation,incipient wetness co‐impregnation,and the chemical vapor deposition method,as well as the newer atom layer deposition(ALD)and galvanic replacement methods,are summarized.The main results from experimental and theoretical studies of various catalytic reactions over SACs,including oxidation reactions,hydrogenation,water gas shift,photocatalytic H2evolution and electrochemical reactions,are also discussed.Moreover,the electronic properties of the single atoms and their interactions with the supports are described to assist in understanding the origin of the high catalytic activity and selectivity of SACs.Finally,possible future research directions of SACs and their applications are proposed.
基金supported by the National Basic Research Program of China (2013CB933201)the National Natural Science Foundation of China (21207037,21577035)the Commission of Science and Technology of Shanghai Municipality (15DZ1205305)~~
文摘LaMnO3was prepared by citrate sol‐gel,coprecipitation,hard template,and hydrothermal methods,respectively,and its catalytic performance for the combustion of vinyl chloride was investigated.N2adsorption‐desorption,X‐ray diffraction(XRD),Raman spectroscopy(Raman),O2temperature programmed desorption(O2‐TPD),H2temperature programmed surface reaction(H2‐TPR)and X‐ray photoelectron spectroscopy(XPS)were used to characterize the physicochemical properties of the LaMnO3samples.The preparation methods had obvious effects on the distribution of oxygen and manganese species on the catalyst surface.The reaction followed the suprafacial mechanism;the activity corresponded with the high amount of Mn4+and adsorbed oxygen species.LaMnO3prepared by the citrate sol‐gel method had the best performance for vinyl chloride combustion with T90of182°C.The optimal activity was attributed to the improved redox capability of Mn4+/Mn3+.More available adsorbed oxygen and Mn4+species on the surface were mainly responsible for the remarkable enhancement of the catalytic activity.
文摘Fixed-bed reactors for the partial oxidation of methane to produce synthetic gas still pose hotspot problems. An alternative reactor, which is known as the shell-and-tube-typed microreactor, has been developed to resolve these problems. The microreactor consists of a 1 cm outside-diameter, 0.8 cm insidediameter and 11 cm length tube, and a 1.8 cm inside-diameter shell. The tube is made of dense alumina and the shell is made of quartz. Two different methods dip and spray coating were performed to line the tube side with the LaNixOy catalyst. Combustion and reforming reactions take place simultaneously in this reactor. Methane is oxidized in the tube side to produce flue gases (CO2 and H2O) which flow counter-currently and react with the remaining methane in the shell side to yield synthesis gas. The methane conversion using the higher-loading catalyst spray-coated tube reaches 97% at 700 ℃, whereas that using the lower-loading catalyst dip-coated tube reaches only 7.78% because of poor adhesion between the catalyst film and the alumina support. The turnover frequencies (TOFs) using the catalyst spray-and dip-coated tubes are 5.75×10^-5 and 2.24×10^-5 mol/gcat· s, respectively. The catalyst spray-coated at 900 ℃ provides better performance than that at 1250 ℃ because sintering reduces the surface-area. The hydrogen to carbon monoxide ratio produced by the spray-coated catalyst is greater than the stoichiometric ratio, which is caused by carbon deposition through methane cracking or the Boudouard reaction.
文摘The Ce-Zr-La-O solid solution was prepared by the sol-gel method. Thestructure and the redox behavior of Ce-Zr-La-O solid solution and CuO/Ce-Zr-La-O catalysts wereinvestigated by using XRD, Raman and TPR techniques. The result shows that the reduction capabilityof Ce_(0.7)Zr_(0.3-y)La_yO solid solution is related to content of La. Appropriate content of La canenhance the redox capability of the solid solution. The oxidation activity of the CuO (6 percent)/Ce_(0.7)Zr_(0.15)La_(0.15)O catalyst is the highest. CuO, which finely dispersed and interacted withthe support, is the site of oxidation activity.
文摘A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.
文摘We synthesized a mesoporous film based on TiO2-reduced graphene oxide(RGO)hybrids using a one-step vapor-thermal method without the need for an additional annealing process.The vapor-thermally prepared TiO2-graphene hybrid(VTH)features unique structures with an ultra-large specific surface area of^260 m^2 g^-1 and low aggregation,giving rise to enhanced light harvesting and increased charge generation and separation efficiency.It was observed that a mesoporous film with uniform pore distribution is simultaneously obtained during the VTH growth process.When a 5.0 wt%RGO VTH film was used as the active layer in photocatalysis,the highest photocatalytic activity for degradation of methyl orange was achieved.For another,when a 0.75 wt%RGO VTH film was used as the photoanode in a dye-sensitized solar cell,the power conversion efficiency reached 7.58%,which represents an increase of 73.1%compared to a solar cell using an a photoanode of pure TiO2 synthesized by a traditional solvothermal method.It is expected that this facile method for the synthesis of TiO2/graphene hybrid mesoporous films will be useful in practical applications for preparing other metal oxide/graphene hybrids with ultra-high photocatalytic activity and photovoltaic performance.
文摘CoO/CeOcomposites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcination in Natmosphere. The samples were characterized by various means such as nitrogen adsorption/desorption, X-ray diffraction(XRD), Htemperature-programmed reduction(H-TPR),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). Results showed that the modified catalyst had the mesoporous structure, comparatively higher amount of surface oxygen and larger oxygen vacancies than others. As a result of the structure and surface composition merits, a high methane combustion conversion(50%) could be obtained at a low temperature of 262 °C for the modified CoO/CeOcomposites catalysts. The experimental results demonstrated that ultrasonic impregnation treatment combined with the Nthermal treatment prior to calcination in air had a promising application for preparation of CoO/CeOcomposites catalysts for low-temperature catalytic combustion of methane.