期刊文献+
共找到3,207篇文章
< 1 2 161 >
每页显示 20 50 100
Liquid-Phase Catalytic Hydrogenation of Furfural in Variable Solvent Media
1
作者 夏淑倩 李阳 +2 位作者 商巧燕 张成武 马沛生 《Transactions of Tianjin University》 EI CAS 2016年第3期202-210,共9页
Water is the most abundant compound inherently existing in bio-oils. Thus understanding the role of water within bio-oils upgrading process is essential for future engineering scale-up design. In this study, furfural ... Water is the most abundant compound inherently existing in bio-oils. Thus understanding the role of water within bio-oils upgrading process is essential for future engineering scale-up design. In this study, furfural was chosen as bio-oils model compound, and the catalytic hydrogenation of furfural over commercial 5%, Ru/C catalyst was firstly investigated in a series of gradient variable water/ethanol mixture solvents. Water had a significant effect on the distribution of product yields. The dominant reaction pathways varied with the water contents in the water/ethanol mixture solvents. Typically, when ethanol was used as the solvent, the main products were obtained by the hydrogenation of carbonyl group or furan ring. When pure water was used as the solvent, the rearrangement reaction of furfural to cyclopentanone should be selectively promoted theoretically. However, serious polymerization and resinification were observed herein in catalytic hydrogenation system of pure water. The catalyst surface was modified by the water-insoluble polymers, and consequently, a relative low yield of cyclopentanone was obtained. A plausible multiple competitive reaction mechanism between polymerization reaction and the hydrogenation of furfural was suggested in this study. Characterizations(TG,FT-IR,SEM)were employed to analyze and explain our experiments. 展开更多
关键词 water FURFURAL catalytic hydrogenation POLYMERIZATION competitive reaction
下载PDF
Dynamics of liquid-phase catalytic oxidation of hydrogen sulfide removal in rural biogas
2
作者 贾丽娟 宁平 +2 位作者 王向宇 瞿广飞 熊向锋 《Journal of Central South University》 SCIE EI CAS 2014年第7期2843-2847,共5页
Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and su... Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and sulfur capacity of the composite solution was about 3 g/L.The results show that purification efficiency was affected by catalyst addition,pH,experimental temperature,and sulfur capacity.The parameters effects on catalytic oxidation were studied,and the optimized conditions were that Fe3+ concentration 0.08 mg/L,reaction temperature 70°C,pH 9.0,with a absorption solution volume of 50 mL,a gas flow rate 200 mL/min,and H2S mass concentration of 1.58-2.02 mg/m3. 展开更多
关键词 liquid phase catalytic oxidation hydrogen sulfide rural biogas purification efficiency RARE-EARTH
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction 被引量:2
3
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility hydrogen evolution reaction
下载PDF
Pt nanoparticles entrapped in ordered mesoporous carbons:An efficient catalyst for the liquid-phase hydrogenation of nitrobenzene and its derivatives 被引量:6
4
作者 李君瑞 李晓红 +1 位作者 丁玥 吴鹏 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1995-2003,共9页
Pt nanoparticles entrapped in ordered mesoporous CMK-3 carbons with p6mm symmetry were prepared using a facile impregnation method, and the resulting materials were characterized using X-ray diffraction spectroscopy, ... Pt nanoparticles entrapped in ordered mesoporous CMK-3 carbons with p6mm symmetry were prepared using a facile impregnation method, and the resulting materials were characterized using X-ray diffraction spectroscopy, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The Pt nanoparticles were highly dispersed in the CMK-3 with 43.7% dispersion. The Pt/CMK-3 catalyst was an effective catalyst for the liquid-phase hydrogenation of nitrobenzene and its derivatives under the experimental conditions studied here. The Pt/CMK-3 catalyst was more active than commercial Pt/C catalyst in most cases. A highest turnover frequency of 43.8 s-1 was measured when the Pt/CMK-3 catalyst was applied for the hydrogenation of 2-methyl-nitrobenzene in ethanol under optimal conditions. It is worthy of note that the Pt/CMK-3 catalyst could be recycled easily, and could be reused at least fourteen times without any loss in activity or selectivity for the hydrogenation of nitrobenzene in ethanol. 展开更多
关键词 Pt nanoparticle Nitrobenzene compound liquid-phase hydrogenation Ordered mesoporous carbon
下载PDF
Kinetics of Liquid-Phase Hydrogenation of Toluene Catalyzed by Hydrogen Storage Alloy MlNi_5 被引量:4
5
作者 袁华军 安越 +1 位作者 徐国华 陈长聘 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第3期385-389,共5页
The kinetics of liquid-phase hydrogenation of toluene catalyzed by MlNi_5 was studied by investigating the influences of the reaction temperature and pressure on the mass transfer-reaction processes inside the slurry.... The kinetics of liquid-phase hydrogenation of toluene catalyzed by MlNi_5 was studied by investigating the influences of the reaction temperature and pressure on the mass transfer-reaction processes inside the slurry. The results show that the reaction rate accelerates when the reaction temperature increases, and reaches its maximum at about 490 K, but if temperature is higher than 510 K, the reaction rate decreases rapidly. The whole reaction process is controlled by the reaction at the surface of the catalyst particles. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particle can be neglected. The apparent reaction rate is zero order for toluene concentration and first order for hydrogen concentration in the liquid phase. The kinetic model is obtained. The kinetic model fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of MlNi_5-toluene slurry system is 41.01 kJ·mol^(-1). 展开更多
关键词 hydrogen storage alloys KINETICS TOLUENE liquid-phase hydrogenation rare earths
下载PDF
RuRh Bimetallic Nanoparticles Stabilized by 15-membered Macrocycles-terminated Poly(propylene imine) Dendrimer:Preparation and Catalytic Hydrogenation of Nitrile–Butadiene Rubber 被引量:3
6
作者 Yang Wang Xiaohong Peng 《Nano-Micro Letters》 SCIE EI CAS 2014年第1期55-67,共13页
A new fourth-generation poly(propylene imine) dendrimer(G4-M) containing 32 triolefinic 15-membered macrocycles on the surfaces has been synthesized. The bimetallic Ru Rh dendrimer-stabilized nanoparticles(DSNs) were ... A new fourth-generation poly(propylene imine) dendrimer(G4-M) containing 32 triolefinic 15-membered macrocycles on the surfaces has been synthesized. The bimetallic Ru Rh dendrimer-stabilized nanoparticles(DSNs) were first prepared within G4-M by a co-complexation route. The new G4-M dendrimer has been characterized by 1H nuclear magnetic resonance, infrared radiation, and elemental analysis.The dendrimer-stabilized bimetallic ions and reduction courses were analyzed by UV-vis spectroscopy. Highresolution transmission electron microscopy and energy dispersive spectrometer were used to characterize the bimetallic nanoparticle size, size distribution, and particle morphology. The Ru Rh bimetallic DSNs showed high catalytic activity for the hydrogenation of nitrile-butadiene rubber. 展开更多
关键词 G4-M dendrimer RuRh bimetallic nanoparticles catalytic hydrogenation Nitrile-butadiene rubber
下载PDF
Catalytic hydrogenation performance of ZIF-8 carbide for electrochemical reduction of carbon dioxide 被引量:2
7
作者 Shuai Fan Huiyuan Cheng +4 位作者 Manman Feng Xuemei Wu Zihao Fan Dongwei Pan Gaohong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第11期144-153,共10页
The conversion of CO_(2) electrocatalytic hydrogenation into energy-rich fuel is considered to be the most effective way to carbon recycle.Nitrogen-doping carbonized ZIF-8 is proposed as carrier of the earth-rich Sn c... The conversion of CO_(2) electrocatalytic hydrogenation into energy-rich fuel is considered to be the most effective way to carbon recycle.Nitrogen-doping carbonized ZIF-8 is proposed as carrier of the earth-rich Sn catalyst to overcome the limit of electron transfer and CO_(2) adsorption capacity of Sn.Hierarchically porous structure of Sn doped carbonized ZIF-8 is controlled by hydrothermal and carbonization conditions,which induces much higher specific surface area than that of the commercial Sn nanoparticle(1003.174 vs.7.410 m^(2)·g^(-1)).The shift of nitrogen peaks in X-ray Photoelectron Spectroscopy spectra indicates interaction between ZIF-8 and Sn,which induces the shift of electron cloud from Sn to the chemical nitrogen to enhance conductivity and regulate electron transfer from catalyst to CO_(2).Lower mass transfer resistance and Warburg resistance are investigated through EIS,which significantly improves the catalytic activity for CO_(2) reduction reaction(CO_(2)RR).Onset potential of the reaction is reduced from-0.74 V to less than-0.54 V vs.RHE.The total Faraday efficiency of HCOOH and CO reaches 68.9%at-1.14 V vs.RHE,which is much higher than that of the commercial Sn(45.0%)and some other Sn-based catalyst reported in the literature. 展开更多
关键词 Carbon dioxide ELECTROCHEMISTRY Selective catalytic reduction Electrochemical hydrogen pump Nitrogen-doping carbonized ZIF-8
下载PDF
Unraveling the catalytically active phase of carbon dioxide hydrogenation to methanol on Zn/Cu alloy: Single atom versus small cluster 被引量:1
8
作者 Xiao-Kuan Wu Hui-Min Yan +3 位作者 Wei Zhang Jie Zhang Guang-Jie Xia Yang-Gang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期582-593,I0015,共13页
Methanol synthesis from CO_(2)hydrogenation catalyzed by Zn/Cu alloy has been widely studied,but there is still debate on its catalytic active phase and whether the Zn can be oxidized during the reaction process.What ... Methanol synthesis from CO_(2)hydrogenation catalyzed by Zn/Cu alloy has been widely studied,but there is still debate on its catalytic active phase and whether the Zn can be oxidized during the reaction process.What is more,as Zn atoms could locate on Zn/Cu alloy surface in forms of both single atom and cluster,how Zn surface distribution affects catalytic activity is still not clear.In this work,we performed a systematic theoretical study to compare the mechanistic natures and catalytic pathways between Zn single atom and small cluster on catalyst surface,where the surface oxidation was shown to play the critical role.Before surface oxidation,the Zn single atom/Cu is more active than the Zn small cluster/Cu,but its surface oxidation is difficult to take place.Instead,after the easy surface oxidation by CO_(2)decomposition,the oxidized Zn small cluster/Cu becomes much more active,which even exceeds the hardlyoxidized Zn single atom/Cu to become the active phase.Further analyses show this dramatic promotion of surface oxidation can be ascribed to the following factors:i)The O from surface oxidation could preferably occupy the strongest binding sites on the center of Zn cluster.That makes the O intermediates bind at the Zn/Cu interface,preventing their too tight binding for further hydrogenation;ii)The higher positive charge and work function on the oxidized surface could also promote the hydrogenation of O intermediates.This work provided one more example that under certain condition,the metal cluster can be more active than the single atom in heterogeneous catalysis. 展开更多
关键词 CO_(2)hydrogenation Surface oxidation Zn/Cu alloy catalytically active phase
下载PDF
Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor 被引量:2
9
作者 Masoud Hasany Mohammad Malakootikhah +1 位作者 Vahid Rahmanian Soheila Yaghmaei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1316-1325,共10页
A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal... A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production.For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used.Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogenation method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and signi ficant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor. 展开更多
关键词 catalytic membrane reactor Mathematical modeling Ethane dehydrogenation hydrogen combustion
下载PDF
Catalytic Hydrogenation of Nitrobenzene to Aniline by Ag/γ-Fe_2O_3 被引量:1
10
作者 赵玲玲 王海峰 祁刚 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第6期872-878,共7页
The Ag/γ-Fe_2O_3 nanocomposite was synthesized by solvothermal reduction method via using ferric nitrate and silver nitrate as raw materials, and ethylene glycol as the reducing agent. The composite was characterized... The Ag/γ-Fe_2O_3 nanocomposite was synthesized by solvothermal reduction method via using ferric nitrate and silver nitrate as raw materials, and ethylene glycol as the reducing agent. The composite was characterized by X-ray powder diffraction, scanning electron microscope, transmission electron microscope, and energy dispersive X-ray. The prepared Ag/γ-Fe_2O_3 was used for the catalytic hydrogenation of nitrobenzene to aniline by hydrazine hydrate. The factors such as the silver content in the catalyst, reaction time, reaction temperature and the regeneration of catalyst were investigated. The results showed that the yield of aniline reached 100% by utilizing the 1%wt(nitrobenzene) Ag/γ-Fe_2O_3 for the catalytic hydrogenation of nitrobenzene for 3 h to obtain aniline at 78 ℃, hydrazine hydrate as the hydrogen source, while the silver content in the catalyst was 3%mol. 展开更多
关键词 Ag/γ-Fe2O3 hydrazine hydrate nitrobenzene aniline catalytic hydrogenation
下载PDF
Catalytic Hydrogenation of Diacetyl Monoxime to Tetramethylpyrazine with the Soluble Transition Metal Catalysts
11
作者 Xiang Yu WANG Xiao Ming ZHENG Zhao Yin HOU (Institute of Catalysis, Zhejiang University (Xixi campus), Hangzhou 310028) (Department of Chemistry, Zhengzhou University, Zhengzhou 450052) 《Chinese Chemical Letters》 SCIE CAS CSCD 1999年第8期701-704,共4页
Catalytic hydrogenation of diacetyl monoxime to tetramethylpyrazine, by the homogeneous catalysts generated in situ from some transition metal chlorides with triphenylphosphine in ethanol under H-2 pressure of 0.6 sim... Catalytic hydrogenation of diacetyl monoxime to tetramethylpyrazine, by the homogeneous catalysts generated in situ from some transition metal chlorides with triphenylphosphine in ethanol under H-2 pressure of 0.6 similar to 4.6 MPa at 100 similar to 150 degrees C, has been studied. The optimum H-2 partial pressure was observed at about 1.3 MPa. The maximum conversion of diacetyl monoxime and yield of tetramethylpyrazine were 97% and 90%, respectively. 展开更多
关键词 diacetyl monoxime catalytic hydrogenation TETRAMETHYLPYRAZINE
下载PDF
High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(Ⅱ)/Cu(Ⅱ)composite
12
作者 Chenyang Zhao Yinhan Cheng +6 位作者 Guangfei Qu Yongheng Yuan Fenghui Wu Ye Liu Shan Liu Junyan Li Ping Ning 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期98-108,共11页
Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully ex... Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully explored and pioneered.The catalytic performance,thermodynamics,kinetics,and catalytic oxidation mechanism of Pd/Cu liquid-phase catalyst catalytic oxidation of PH_(3) were thoroughly investigated.The results showed that Pd/Cu has a superior catalytic effect on the removal of PH_(3) in the gas mixture under low temperature.With CO as the carrier gas,the removal efficiency of PH_(3) could be maintained at 100%for nearly 450 min,indicating that the Pd/Cu liquid phase catalyst has good resistance to heterotoxicity.According to the thermodynamic,kinetic,and related characterization results of the PH_(3) purification process,the kinetic region of the gas–liquid reaction of PH_(3) absorption by Pd/Cu solution was an interfacial reaction.Pd was the primary catalyst and Cu was the secondary catalyst,and the adsorption of PH_(3)was a primary reaction.PH_(3) was spontaneously oxidized to H_(3)PO_(4) in the Pd/Cu catalytic system during the removal process.Pd was regenerated by O_(2) and Cu,increasing the activity and stability of the Pd/Cu catalyst in the sustain and efficient purification of PH_(3) in tail gas. 展开更多
关键词 liquid-phase catalysis PHOSPHINE catalytic oxidation Kinetic analysis Transition metals
下载PDF
Synthesis of Agomelatine by One-pot Catalytic Hydrogenation and Acetylation with NiO
13
作者 于志君 CHENG Zhengzai +8 位作者 谢聪 ZENG Sheng DENG Haiying LIU Panpan HU Hai LI Guangyao DING Ling Mario Gauthier LI Shiqian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期453-458,共6页
Nano-NiO and bulk NiO were prepared from Ni(AC)_2·4 H_2O by coordination precipitation using aqueous ammonia and by a solid state reaction, respectively. The nickel oxide particles were characterized by X-ray Dif... Nano-NiO and bulk NiO were prepared from Ni(AC)_2·4 H_2O by coordination precipitation using aqueous ammonia and by a solid state reaction, respectively. The nickel oxide particles were characterized by X-ray Diffraction(XRD) and scanning electron microscopy(SEM). The results indicate that nano-sized NiO has a crystal phase with a standard face-centered cubic lattice structure, with a mean particle diameter of about 10 nm. The evaluation of the activity of nickel oxide nanoparticles in the catalytic hydrogenation of 7-methoxy-1-naphthylacetonitrile was carried out. The results demonstrate the efficient synthesis of the title compound by a one-pot catalytic hydrogenation and acetylation with NiO. The NiO nanoparticles displayed superior catalytic activity in the synthesis of agomelatine in the one-pot reaction.The total yield of agomelatine is over 81.8% with a purity of 99.2%, as determined by HPLC. The structure of agomelatine was confirmed by IR, MS, and 1 H NMR analysis. 展开更多
关键词 NANO-NIO homogeneous precipitation method catalytic hydrogenation AGOMELATINE N-[2-(7-Methoxy-1-naphthyl)ethyl]acetamide 7-Methoxy-1-naphthylacetonitrile
下载PDF
Diastereoselective Catalytic Hydrogenation of Schiff Bases of <i>N</i>-Pyruvoyl-(<i>S</i>)-Proline Esters
14
作者 Toratane Munegumi Shokichi Ohuchi Kaoru Harada 《International Journal of Organic Chemistry》 2014年第1期29-39,共11页
Diastereoselective catalytic hydrogenation of pyruvic acid esters, amides, and their Schiff bases has been well studied over a long period to show that proline is one of the most effective chiral auxiliaries. Proline ... Diastereoselective catalytic hydrogenation of pyruvic acid esters, amides, and their Schiff bases has been well studied over a long period to show that proline is one of the most effective chiral auxiliaries. Proline derivatives have been used as auxiliaries in the diastereoselective catalytic hydrogenation of pyruvamide Schiff bases. The diastereoselective hydrogenation resulted in up to a 78% enantiomeric excess of the amino acid derived from the hydrolysis of the dipeptide products. The chelation hypothesis explains the stereochemistry of the catalytic hydrogenation using (S)-proline esters in the amide moiety and the two chiral centers in the amide and Schiff base moieties. 展开更多
关键词 DIASTEREOSELECTIVE catalytic hydrogenation PROLINE Pyruvamide SCHIFF Base
下载PDF
Intrinsic kinetics of catalytic hydrogenation of 2-nitro-4-acetylamino anisole to 2-amino-4-acetylamino anisole over Raney nickel catalyst
15
作者 Xiangyang Cui Xin Zhang +5 位作者 Baoju Wang Yuqi Sun Haikui Zou Guangwen Chu Yong Luo Jianfeng Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期1-8,共8页
The catalytic hydrogenation of 2-nitro-4-acetylamino anisole(NMA)is a less-polluting and efficient method to produce 2-amino-4-acetamino anisole(AMA).However,the kinetics of catalytic hydrogenation of NMA to AMA remai... The catalytic hydrogenation of 2-nitro-4-acetylamino anisole(NMA)is a less-polluting and efficient method to produce 2-amino-4-acetamino anisole(AMA).However,the kinetics of catalytic hydrogenation of NMA to AMA remains obscure.In this work,the kinetic models including power-law model and Langmuir-Hinshelwood-Hougen-Watson(LHHW)model of NMA hydrogenation to AMA catalyzed by Raney nickel catalyst were investigated.All experiments were carried out under the elimination of mass transfer resistance within the temperature range of 70–100°C and the hydrogen pressure of 0.8–1.5 MPa.The reaction was found to follow 0.52-order kinetics with respect to the NMA concentration and 1.10-order kinetics in terms of hydrogen pressure.Based on the LHHW model,the dual-site dissociation adsorption of hydrogen was analyzed to be the rate determining step.The research of intrinsic kinetics of NMA to AMA provides the guidance for the reactor design and inspires the catalyst modification. 展开更多
关键词 Intrinsic kinetics 2-nitro-4-acetylamino anisole catalytic hydrogenation Raney nickel catalyst
下载PDF
CATALYTIC PERFORMANCE OF MIXED-BIMETALLIC RUTHENIUM CARBONYL CLUSTERDERIVED CATALYSTS IN CO HYDROGENATION
16
作者 Masaru ICHIKAWA Atsushi FUKUOKA Catalysis Research Center,Hokkaido University,Sapporo 060,Japan. Feng Shou XIAO Catalysis Research Center,Hokkaido University,Sapporo 060,Japan.Department of Chemistry,Jilin University,Changchun 120023,China. D.F.SHRIVER Department of Chemistry,Northwestern University,Evanston,IL 602083113,USA. 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第9期707-708,共2页
The bimetallic catalysts prepared from SiO_2-supported Ru-Co,Ru- Fe and Ru-Mo carbonyl clusters exhibited high yields and selectivities towards oxygenates such as C_1-C_5 from CO+H_2,in contrast to the catalysts prepa... The bimetallic catalysts prepared from SiO_2-supported Ru-Co,Ru- Fe and Ru-Mo carbonyl clusters exhibited high yields and selectivities towards oxygenates such as C_1-C_5 from CO+H_2,in contrast to the catalysts prepared from homometallic and bimetallic Ru,Ru-Ni,Ru-Rh,Ru-Mn,and Ru- Cr carbonyl clusters.The FTIR investigation revealed that the 1584 cm^(-1) species plays an important role in the formation of oxygenates in CO hydrogenation,which is possibly assigned to surface formyl species. 展开更多
关键词 Ru CO Cr catalytic PERFORMANCE OF MIXED-BIMETALLIC RUTHENIUM CARBONYL CLUSTERDERIVED CATALYSTS IN CO hydrogenation CO
下载PDF
Benzene selective hydrogenation over supported Ni(nano-) particles catalysts: Catalytic and kinetics studies
17
作者 M.H.Peyrovi N.Parsafard Z.Mohammadian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期521-528,共8页
This report aims to reduce the benzene in a mixture of benzene and toluene as a model reaction using catalytic hydrogenation. In this research, we developed a series of catalysts with different supports such as Ni/HMS... This report aims to reduce the benzene in a mixture of benzene and toluene as a model reaction using catalytic hydrogenation. In this research, we developed a series of catalysts with different supports such as Ni/HMS, Ni/HZSM-5, Ni/HZSM5-HMS, Ni/Al2O3 and Ni/SiO2. Kinetic of this reaction was investigated under various hydrogen and benzene pressures. For more study, two kinetic models have also been selected and tested to describe the kinetics for this reaction. Both used models, the power law and Langmuir-Hinshelwood, provided a good fit toward the experimental data and allowed to determine the kinetic parameters. Among these catalysts, Ni/Al2O3 showed the maximum benzene conversion (99.19%) at 130℃ for benzene hydrogenation. The lowest toluene conversion was observed for Ni/SiO2. Furthermore, this catalyst presented high selectivity to benzene (75.26%) at 130℃. The catalytic performance (activity, selectivity and stability) and kinetics evaluations were shown that the Ni/SiO2 is an effective catalyst to hydrogenate benzene. It seems that the surface properties particularly pore size are effective parameter compared to other factors such as acidity and metal dispersion in this process. 展开更多
关键词 catalytic hydrogenation Power law model Langmuir-Hinshelwood mode Selectivity Kinetics
下载PDF
STUDIES ON THE SYNTHESIS OF BAIMUXINOL BY CATALYTIC HYDROGENATION OF DEHYDROBAIMUXINOL
18
作者 Qian LIU, Ji Yu GUO, Yah Qing XU, Hong Ju FANG, Xiao Tian LIANG Institute of Materia Medica, Chinese Academy of Medal Sciences, Beijing 100050 《Chinese Chemical Letters》 SCIE CAS CSCD 1992年第7期495-498,共4页
Baimuxinol, a 4-hydroxymethyl agarofuran isolated from Aquilaria Sinensis, was synthsizd. The stereoselectivity of catalytic hydrogenation of dehydrobaimuxino and its derivatives was studied.
关键词 STUDIES ON THE SYNTHESIS OF BAIMUXINOL BY catalytic hydrogenation OF DEHYDROBAIMUXINOL
下载PDF
PREPARATION OF 4,4′-DIAMINOSTILBENE-2,2′-DISULFONIC ACID BY CATALYTIC HYDROGENATION
19
作者 赵晓波 陈宏博 张淑芬 《化工学报》 EI CAS CSCD 北大核心 2003年第9期1338-1339,共2页
关键词 二氨基 二磺酰酸 催化氢化 选择性
下载PDF
Significant effect of Ca modification on improving catalytic stability of Cu-catalyst in gas-phase furfural hydrogenation to furfuralcohol
20
作者 Chao Wang Jiarui He +6 位作者 Mengjuan Zhang Peng Zheng Guoguo Liu Yajing Zhang Zhennan Han Jing Wu Kangjun Wang 《Resources Chemicals and Materials》 2023年第4期321-330,共10页
The gas-phase hydrogenation of furfural to furfuralcohol over Cr-free Cu-based catalysts has attracted increasing attention due to its environmentally friendly nature and mild operating conditions.Although reduced pur... The gas-phase hydrogenation of furfural to furfuralcohol over Cr-free Cu-based catalysts has attracted increasing attention due to its environmentally friendly nature and mild operating conditions.Although reduced pure nano-sized CuO exhibits complete furfural hydrogenation and nearly 100%furfuralcohol selectivity,it suffers from rapid deactivation caused by sintering.In this study,we conducted comparative investigations on the catalytic performance and stability of two Cu-based catalysts:90%CuO-10%SiO_(2) and 90%CuO-5%CaO-5%SiO_(2),in the gas-phase furfural hydrogenation.The reaction is carried out under various conditions,including temperatures ranging from 120 to 170℃,LHSVs of 1 to 2.2 h^(-1),and H_(2) to furfural molar ratios of 3.5 to 12.5.The results indicate that under optimal conditions,the Ca-modified catalyst achieves nearly complete furfural conversion and almost 100%furfuralcohol selectivity for a test duration of 31 h.In contrast,the unmodified catalyst exhibits stable performance for only seven hours despite the similar initial performance.XRD analysis confirms that the gradual deactivation of both catalysts is attributed to the oxidation of reduced metallic Cu sites to Cu oxides.Further characterizations of the two spent catalysts using HRTEM and XPS analyses,along with DFT calculations,suggest that the presence of Ca in Cu lattices prevents the loss of electrons from low-valence Cu sites or the reduced metallic Cu sites,thus inhibiting their oxidation to high-valence Cu oxides.This phenomenon contributes to suppressing the deactivation of Cu-catalysts in the gas-phase furfural hydrogenation process. 展开更多
关键词 Gas-phase furfural catalytic hydrogenation Furfuralcohol Deactivation mechanism Ca promoter
下载PDF
上一页 1 2 161 下一页 到第
使用帮助 返回顶部