期刊文献+
共找到1,713篇文章
< 1 2 86 >
每页显示 20 50 100
Isolated diatomic Zn-Co metal–nitrogen/oxygen sites with synergistic effect on fast catalytic kinetics of sulfur species in Li-S battery 被引量:1
1
作者 Chun-Lei Song Qiao-Tong He +7 位作者 Zhongyi Zeng Jing-Yan Chen Tian Wen Yu-Xiao Huang Liu-Chun Zhuang Wei Yi Yue-Peng Cai Xu-Jia Hong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期505-514,共10页
Lithium-sulfur batteries are severely restricted by low electronic conductivity of sulfur and Li_(2)S,shuttle effect,and slow conversion reaction of lithium polysulfides(LiPSs).Herein,we report a facile and highyield ... Lithium-sulfur batteries are severely restricted by low electronic conductivity of sulfur and Li_(2)S,shuttle effect,and slow conversion reaction of lithium polysulfides(LiPSs).Herein,we report a facile and highyield strategy for synthesizing dual-core single-atom catalyst(ZnCoN_(4)O_(2)/CN)with atomically dispersed nitrogen/oxygen-coordinated Zn-Co sites on carbon nanosheets.Based on density functional theory(DFT)calculations and LiPSs conversion catalytic ability,ZnCoN_(4)O_(2)/CN provides dual-atom sites of Zn and Co,which could facilitate Li^(+)transport and Li_(2)S diffusion,and catalyze LiPSs conversion more effectively than homonuclear bimetallic single-atom catalysts or their simple mixture and previously reported singleatom catalysts.Li-S cell with ZnCoN_(4)O_(2)/CN modified separator showed excellent rate performance(789.4 mA h g^(-1)at 5 C)and stable long cycle performance(0.05%capacity decay rate at 6C with 1000cycles,outperforming currently reported single atomic catalysts for LiPSs conversion.This work highlights the important role of metal active centers and provides a strategy for producing multifunctional dual-core single atom catalysts for high-performance Li-S cells. 展开更多
关键词 Dual-core single-atom catalysts Lithium polysulfides Fast catalytic kinetics Li_(2)S diffusion Li-S battery
下载PDF
Study on the catalytic degradation of sodium lignosulfonate to aromatic aldehydes over nano-CuO:Process optimization and reaction kinetics
2
作者 Yingjie Song Shuqi Zhong +5 位作者 Yingjiao Li Kun Dong Yong Luo Guangwen Chu Haikui Zou Baochang Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期300-309,共10页
As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective... As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective technology to convert lignin like sodium lignosulfonate(SL),a lignin derivative,into aromatic aldehydes such as vanillin and syringaldehyde.However,how to improve the yield of aromatic aldehyde and conversion efficiency is still a challenge,and many operating conditions that significantly affect the yield of these aromatic compounds have rarely been investigated systematically.In this work,we adopted the stirred tank reactor(STR)for the CWAO process with nano-CuO as catalyst to achieve the conversion of SL into vanillin and syringaldehyde.The effect of operating conditions including reaction time,oxygen partial pressure,reaction temperature,SL concentration,rotational speed,catalyst amount,and NaOH concentration on the yield of single phenolic compound was systematically investigated.The results revealed that all these operating conditions exhibit a significant effect on the aromatic aldehyde yield.Therefore,they should be regulated in an optimal value to obtain high yield of these aldehydes.More importantly,the reaction kinetics of the lignin oxidation was explored.This work could provide basic data for the optimization and design of industrial operation of lignin oxidation. 展开更多
关键词 NANO-CUO Sodium lignosulfonate catalytic wet aerobic oxidation(CWAO) Aromatic aldehyde Reaction kinetics
下载PDF
Intrinsic kinetics of catalytic hydrogenation of 2-nitro-4-acetylamino anisole to 2-amino-4-acetylamino anisole over Raney nickel catalyst
3
作者 Xiangyang Cui Xin Zhang +5 位作者 Baoju Wang Yuqi Sun Haikui Zou Guangwen Chu Yong Luo Jianfeng Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期1-8,共8页
The catalytic hydrogenation of 2-nitro-4-acetylamino anisole(NMA)is a less-polluting and efficient method to produce 2-amino-4-acetamino anisole(AMA).However,the kinetics of catalytic hydrogenation of NMA to AMA remai... The catalytic hydrogenation of 2-nitro-4-acetylamino anisole(NMA)is a less-polluting and efficient method to produce 2-amino-4-acetamino anisole(AMA).However,the kinetics of catalytic hydrogenation of NMA to AMA remains obscure.In this work,the kinetic models including power-law model and Langmuir-Hinshelwood-Hougen-Watson(LHHW)model of NMA hydrogenation to AMA catalyzed by Raney nickel catalyst were investigated.All experiments were carried out under the elimination of mass transfer resistance within the temperature range of 70–100°C and the hydrogen pressure of 0.8–1.5 MPa.The reaction was found to follow 0.52-order kinetics with respect to the NMA concentration and 1.10-order kinetics in terms of hydrogen pressure.Based on the LHHW model,the dual-site dissociation adsorption of hydrogen was analyzed to be the rate determining step.The research of intrinsic kinetics of NMA to AMA provides the guidance for the reactor design and inspires the catalyst modification. 展开更多
关键词 Intrinsic kinetics 2-nitro-4-acetylamino anisole catalytic hydrogenation Raney nickel catalyst
下载PDF
Kinetics insights into size effects of carbon nanotubes'growth and their supported platinum catalysts for 4,6-dinitroresorcinol hydrogenation
4
作者 Yan Zhang Xiangxue Zhang +6 位作者 Keng Sang Wenyao Chen Gang Qian Jing Zhang Xuezhi Duan Xinggui Zhou Weikang Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期133-140,共8页
Size effects are a well-documented phenomenon in heterogeneous catalysis,typically attributed to alterations in geometric and electronic properties.In this study,we investigate the influence of catalyst size in the pr... Size effects are a well-documented phenomenon in heterogeneous catalysis,typically attributed to alterations in geometric and electronic properties.In this study,we investigate the influence of catalyst size in the preparation of carbon nanotube(CNT)and the hydrogenation of 4,6-dinitroresorcinol(DNR)using Fe_(2)O_(3)and Pt catalysts,respectively.Various Fe_(2)O_(3)/Al_(2)O_(3)catalysts were synthesized for CNT growth through catalytic chemical vapor deposition.Our findings reveal a significant influence of Fe_(2)O_(3)nanoparticle size on the structure and yield of CNT.Specifically,CNT produced with Fe_(2)O_(3)/Al_(2)O_(3)containing 28%(mass)Fe loading exhibits abundant surface defects,an increased area for metal-particle immobilization,and a high carbon yield.This makes it a promising candidate for DNR hydrogenation.Utilizing this catalyst support,we further investigate the size effects of Pt nanoparticles on DNR hydrogenation.Larger Pt catalysts demonstrate a preference for 4,6-diaminoresorcinol generation at(100)sites,whereas smaller Pt catalysts are more susceptible to electronic properties.The kinetics insights obtained from this study have the potential to pave the way for the development of more efficient catalysts for both CNT synthesis and DNR hydrogenation. 展开更多
关键词 kinetics Size effects catalytic hydrogenation Active site
下载PDF
Theoretically predicted innovative palladium stripe dopingcobalt(111) surface with excellent catalytic performance for carbonmonoxide oxidative coupling to dimethyl oxalate
5
作者 Bingying Han Neng Shi +5 位作者 Mengjie Dong Ye Liu Runping Ye Lixia Ling Riguang Zhang Baojun Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期235-243,共9页
Pd-based catalysts are extensively employed to catalyze CO oxidative coupling to generate DMO,while the expensive price and high usage of Pd hinder its massive application in industrial production.Designing Pd-based c... Pd-based catalysts are extensively employed to catalyze CO oxidative coupling to generate DMO,while the expensive price and high usage of Pd hinder its massive application in industrial production.Designing Pd-based catalysts with high efficiency and low Pd usage as well as expounding the catalytic mechanisms are significant for the reaction.In this study,we theoretically predict that Pd stripe doping Co(111)surface exhibits excellent performance than pure Pd(111),Pd monolayer supporting on Co(111)and Pd single atom doping Co(111)surface,and clearly expound the catalytic mechanisms through the density functional theory(DFT)calculation and micro-reaction kinetic model analysis.It is obtained that the favorable reaction pathway is COOCH_(3)-COOCH_(3)coupling pathway over these four catalysts,while the rate-controlling step is COOCH_(3)+CO+OCH_(3)→2COOCH_(3)on Pd stripe doping Co(111)surface,which is different from the case(2COOCH_(3)→DMO)on pure Pd(111),Pd monolayer supporting on Co(111)and Pd single atom doping Co(111)surface.This study can contribute a certain reference value for developing Pd-based catalysts with high efficiency and low Pd usage for CO oxidative coupling to DMO. 展开更多
关键词 CO oxidative coupling to DMO Pd stripe doping Co(111)surface catalytic mechanism DFT calculation Micro-reaction kinetic model analysis catalytic performance
下载PDF
Kinetics of selective catalytic reduction of NO by NH_3 on Fe-Mo/ZSM-5 catalyst 被引量:9
6
作者 LI Zhe SHEN Lin-tao HUANG Wei XIE Ke-chang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第12期1516-1519,共4页
The catalyst of Fe-Mo/ZSM-5 has been found to be more active than Fe-ZSM-5 and Mo/ZSM-5 separately for selective catalytic reduction (SCR) of nitric oxide (NO) with NH3. The kinetics of the SCR reaction in the pre... The catalyst of Fe-Mo/ZSM-5 has been found to be more active than Fe-ZSM-5 and Mo/ZSM-5 separately for selective catalytic reduction (SCR) of nitric oxide (NO) with NH3. The kinetics of the SCR reaction in the presence of O2 was studied in this work. The results showed that the observed reaction orders were 0.74-0.99, 0.01-0.13, and 0 for NO, O2 and NH3 at 350-450℃, respectively. And the apparent activation energy of the SCR was 65 kJ/mol on the Fe-Mo/ZSM-5 catalyst. The SCR mechanism was also deduced. Adsorbed NO species can react directly with adsorbed ammonia species on the active sites to form N2 and H2O. Gaseous O2 might serve as a reoxidizing agent for the active sites that have undergone reduction in the SCR process. It is also important to note that a certain amount of NO was decomposed directly over the Fe-Mo/ZSM-5 catalyst in the absence of NH3. 展开更多
关键词 selective catalytic reduction (SCR) nitric oxide (NO) Fe-Mo/ZSM-5 kinetics activation energy
下载PDF
Effect of inhibitors on macroscopical oxidation kinetics of calcium sulfite 被引量:3
7
作者 ZHAOYi WANGLi-dong +2 位作者 WANGXiao-ming LIQiang-wei XUPei-yao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第3期483-487,共5页
In the presence of inhibitors, the macroscopical oxidation kinetics of calcium sulfite, the main byproduct in wet limestone scrubbing, was studied for the first time by adding different inhibitors and varying pH, conc... In the presence of inhibitors, the macroscopical oxidation kinetics of calcium sulfite, the main byproduct in wet limestone scrubbing, was studied for the first time by adding different inhibitors and varying pH, concentration of calcium sulfite, oxygen partial pressure, concentration of inhibitors and temperature. The mathematical model about the general oxidation reaction was established, which was controlled by three steps involving dissolution of calcium sulfite, mass transfer of oxygen and chemical reaction in the solution. It was concluded that the general reaction was controlled by mass transfer of oxygen under uncatalyzed conditions, while it was controlled by dissolution of calcium sulfite after adding three kinds of inhibitors. Thus, the theory was provided for investigating the mechanism and oxidation kinetics of sulfite. The beneficial references were also supplied for design of oxidation technics in the wet limestone scrubbing. 展开更多
关键词 calcium sulfite macroscopical OXIDATION kinetics INHIBITOR
下载PDF
Performance and Kinetics Studies on Selective Catalytic Reduction of NOx with NH_3 over MnO_x-WO_3/TiO_2 Catalyst 被引量:2
8
作者 WU Bi-jun XIAO Ping LIU Xiao-qin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第6期1002-1006,共5页
The catalytic activities of MnOx-WO3/TiO2 for selective catalytic reduction(SCR) of NO with NH3 were investigated in a wide range of temperature and reaction condition.It yielded a NOx conversion of 80.3%—99.6% and... The catalytic activities of MnOx-WO3/TiO2 for selective catalytic reduction(SCR) of NO with NH3 were investigated in a wide range of temperature and reaction condition.It yielded a NOx conversion of 80.3%—99.6% and a N2 product selectivity of 100%—98.7% during 100 °C to 350 °C at gas hourly space velocity(GHSV)=18900 h-1.In the presence of 0.01% SO2 and 6% H2O at 120 °C,the NOx conversion can maintain 98.5%.At 300 °C and with 0.07% SO2 in reactant stream,the NOx conversion stabilized at 99% as high as the commercial V-W/TiO2 catalyst's level.The steady-state kinetics study shows that O2 played a promoting role.In the presence of less than 1.5% O2,NOx conversion can increase sharply with the increase of O2 concentration.The reaction order was zero with respect to NH3 and first with respect to NO with excess O2 and H2O.The kinetics active energy(Ea) of Mn-W/TiO2 was calculated to be 6.24 kJ/mol according to the kinetic experiment at various temperatures,much lower than those of other catalysts reported in the literature.Mn-W/TiO2 is an excellent catalyst for SCR of NO with NH3 by now. 展开更多
关键词 Selective catalytic reduction of NO with NH3 MnOx-WO3/TiO2 PERFORMANCE kinetics
下载PDF
Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation 被引量:4
9
作者 Jie Wu Yunjie Zhou +6 位作者 Haodong Nie Kaiqiang Wei Hui Huang Fan Liao Yang Liu Mingwang Shao Zhenhui Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期61-67,I0003,共8页
The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(P... The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(PtNi_(2))have an enhanced HOR activity compared with single component Pt catalyst.While,the interface electron-transfer kinetics of PtNi_(2)catalyst exhibits a very wide electron-transfer speed distribution.When combined with carbon dots(CDs),the interface charge transfer of PtNi_(2)-CDs composite is optimized,and then the PtNi_(2)-5 mg CDs exhibits about 2.67 times and 4.04 times higher mass and specific activity in 0.1 M KOH than that of 20%commercial Pt/C.In this system,CDs also contribute to trapping H^(+)and H_(2)O generated during HOR,tuning hydrogen binding energy(HBE),and regulating interface electron transfer.This work provides a deep understanding of the interface catalytic kinetics of Pt-based alloys towards highly efficient HOR catalysts design. 展开更多
关键词 Pt-based alloys Carbon dots Interface electron transfer Interface catalytic kinetics Hydrogen oxidation reaction
下载PDF
Light olefin production by catalytic co-cracking of Fischer–Tropsch distillate with methanol and the reaction kinetics investigation 被引量:1
10
作者 Hui Zou Teng Pan +4 位作者 Yanwen Shi Youwei Cheng Lijun Wang Yu Zhang Xi Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第1期143-151,共9页
Catalytic co-cracking of Fischer–Tropsch(FT) light distillate and methanol combines highly endothermic olefin cracking reaction with exothermic methanol conversion over ZSM-5 catalyst to produce light olefins through... Catalytic co-cracking of Fischer–Tropsch(FT) light distillate and methanol combines highly endothermic olefin cracking reaction with exothermic methanol conversion over ZSM-5 catalyst to produce light olefins through a nearly thermoneutral process. The kinetic behavior of co-cracking reactions was investigated by different feed conditions: methanol feed only, olefin feed only and co-feed of methanol with olefins or F–T distillate. The results showed that methanol converted to C2–C6 olefins in first-order parallel reaction at low space time, methylation and oligomerization–cracking prevailed for the co-feed of methanol and C2–C5 olefins, while for C6–C8 olefins,monomolecular cracking was the dominant reaction whether fed alone or co-fed with methanol. For FT distillate and methanol co-feed, alkanes were almost un-reactive, C3–C5 olefins were obtained as main products, accounting for 71 wt% for all products. A comprehensive co-cracking reaction scheme was proposed and the model parameters were estimated by the nonlinear least square method. It was verified by experimental data that the kinetic model was reliable to predict major product distribution for co-cracking of FT distillate with methanol and could be used for further reactor development and process design. 展开更多
关键词 Fischer–Tropsch DISTILLATE catalytic co-cracking Light olefins METHANOL Reaction kinetics
下载PDF
Kinetics of catalytically activated duplication in aggregation growth 被引量:1
11
作者 王海锋 林振权 +1 位作者 高艳 胥超 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第8期3577-3584,共8页
We propose a catalytically activated duplication model to mimic the coagulation and duplication of the DNA polymer system under the catalysis of the primer RNA. In the model, two aggregates of the same species can coa... We propose a catalytically activated duplication model to mimic the coagulation and duplication of the DNA polymer system under the catalysis of the primer RNA. In the model, two aggregates of the same species can coagulate themselves and a DNA aggregate of any size can yield a new monomer or double itself with the help of RNA aggregates. By employing the mean-field rate equation approach we analytically investigate the evolution behaviour of the system. For the system with catalysis-driven monomer duplications, the aggregate size distribution of DNA polymers αk(t) always follows a power law in size in the long-time limit, and it decreases with time or approaches a time-independent steady-state form in the case of the duplication rate independent of the size of the mother aggregates, while it increases with time increasing in the case of the duplication rate proportional to the size of the mother aggregates. For the system with complete catalysis-driven duplications, the aggregate size distribution αk(t) approaches a generalized or modified scaling form. 展开更多
关键词 AGGREGATION catalytically activated reaction rate equation kinetic behavior
下载PDF
Kinetics of 2-Methyl-6-acetyl-naphthalene Liquid Phase Catalytic Oxidation 被引量:2
12
作者 田文玉 薛为岚 +1 位作者 曾作祥 邵记 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第1期72-77,共6页
In this paper, a kinetics model for the liquid-phase oxidation of 2-methyl-6-acetyl-naphthalene to 2,6-naphthalene dicarboxylic acid catalyzed by cobalt-manganese-bromide is proposed. The effects of the reaction tempe... In this paper, a kinetics model for the liquid-phase oxidation of 2-methyl-6-acetyl-naphthalene to 2,6-naphthalene dicarboxylic acid catalyzed by cobalt-manganese-bromide is proposed. The effects of the reaction temperature, catalyst concentration and ratio of catalyst on the lime evolution of the experimental concentration for the constituents including raw material, intermediates and product are investigated. The model parameters are determined in a nonlinear optimization, minimizing the difference between the simulated and experimental time evolution of the product composition obtained in a semi-batch oxidation reactor where the gas and liquid phase were well nuxed. The kinetics data demonstrate that the model is suitable to the liquid-phase oxidation of 2-methyl-6-acetyl-naphthalene to 2,6-naphthalene dicarboxylic acid. 展开更多
关键词 2-methyl-6-acetyl-naphthalene 2 6-naphthalene dicarboxylic acid liquid phase catalytic oxidation kinetics
下载PDF
Synthesis of 4-Phenylphthalonitrile by Vapor-Phase Catalytic Ammoxidation of Intermediate 4-Phenyl-<i>o</i>-Tolunitrile: Reaction Kinetics 被引量:3
13
作者 G. A. Bagirzade D. B. Tagiyev M. R. Manafov 《Modern Research in Catalysis》 2014年第1期6-11,共6页
Kinetic regularities of 4-phenyl-o-tolunitrile ammoxidation on V-Sb-Bi-Zr/γ-Al2O3 oxide catalyst in the temperature interval 633 - 673 K have been studied. It has been established that rates of conversion of 4-phenyl... Kinetic regularities of 4-phenyl-o-tolunitrile ammoxidation on V-Sb-Bi-Zr/γ-Al2O3 oxide catalyst in the temperature interval 633 - 673 K have been studied. It has been established that rates of conversion of 4-phenyl-o-tolu- nitrile into the aimed 4-phenylphthalonitrile and CO2 are described by half-order equation on concentration of substratum and to be independent of the oxygen and ammonia partial pressures. It has been revealed that formation of 4-phenylphthalimide from byproducts is due to hydrolysis of 4-phenylphthalonitrile;carbon dioxide is produced by oxidation of 4-phenyl-o-tolunitrile and decarboxylation of 4-phenylphthalimide, and 4-phenylben- zonitrile is produced from 4-phenyl-o-tolunitrile and 4-phenylphthalimide. 展开更多
关键词 catalytic AMMOXIDATION Partial Pressures 4-Phenylphthalimide VAPOR-PHASE Electron-Donorship Kinetic Measurements
下载PDF
Catalytic kinetics of dimethyl ether one-step synthesis over CeO_2–CaO–Pd/HZSM-5 catalyst in sulfur-containing syngas process 被引量:1
14
作者 Ruizhi Chu Wenxin Hou +4 位作者 Xianliang Meng Tingting Xu Zhenyong Miao Guoguang Wu Lei Bai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第12期1735-1741,共7页
CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of Ce... CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of CeO_2–CaO–Pd/HZSM-5 was investigated to ensure that the kinetics experimental results were not significantly influenced by induction period and catalytic deactivation. A large number of kinetic data points(40 sets) were obtained over a range of temperature(240–300 °C), pressure(3–4 MPa), gas hourly space velocity(GHSV)(2000–3000 L·kg^(-1)·h^(-1)) and H_2/CO mole ratio(2–3). Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism. Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method. The model calculations were in appropriate accordance with the experimental data. 展开更多
关键词 CeO_2–CaO –Pd/HZSM-5 catalyst DME One-step synthesis catalytic kinetics Sulfur-containing syngas
下载PDF
Single-atomic tungsten-doped Co_(3)O_(4) nanosheets for enhanced electrochemical kinetics in lithium–sulfur batteries 被引量:3
15
作者 Sangni Wang Riming Hu +11 位作者 Ding Yuan Lei Zhang Chao Wu Tianyi Ma Wei Yan Rui Wang Liang Liu Xuchuan Jiang Hua Kun Liu Shi Xue Dou Yuhai Dou Jiantie Xu 《Carbon Energy》 SCIE CSCD 2023年第8期31-41,共11页
The practical application of lithium–sulfur batteries(LSBs)is severely hindered by the undesirable shuttling of lithium polysulfides(LiPSs)and sluggish redox kinetics of sulfur species.Herein,a series of ultrathin si... The practical application of lithium–sulfur batteries(LSBs)is severely hindered by the undesirable shuttling of lithium polysulfides(LiPSs)and sluggish redox kinetics of sulfur species.Herein,a series of ultrathin singleatomic tungsten-doped Co_(3)O_(4)(Wx-Co_(3)O_(4))nanosheets as catalytic additives in the sulfur cathode for LSBs are rationally designed and synthesized.Benefiting from the enhanced catalytic activity and optimized electronic structure by W doping,the Wx-Co_(3)O_(4) not only reduces the shuttling of LiPSs but also decreases the energy barrier of sulfur redox reactions of sulfur species,leading to accelerated electrode kinetic.As a result,LSB cathodes with the use of 5.0 wt%W0.02-Co_(3)O_(4) as the electrocatalyst show the high reversible capacities of 1217.0 and 558.6 mAh g^(-1) at 0.2 and 5.0 C,respectively,and maintain a high reversible capacity of 644.6 mAh g^(-1) at 1.0 C(1.0 C=1675 mA g^(-1))after 500 cycles.With a high sulfur loading of 5.5 mg cm^(-2) and electrolyte–electrode ratio of 8μL_(electrolyte) mg_(sulfur)^(-1),the 5.0 wt%W_(0.02)-Co_(3)O_(4)-based sulfur cathode also retains a high reversible areal capacity of 3.86 mAh cm^(-2) at 0.1 C after 50 cycles with an initial capacity retention of 84.7%. 展开更多
关键词 catalytic additives lithium-sulfur batteries single-atomic dopant sluggish redox kinetics
下载PDF
Three-in-one LaNiO_(3) functionalized separator boosting electrochemical stability and redox kinetics for high-performance Li-S battery 被引量:2
16
作者 Weiyu Wang Mingxiu Hou +6 位作者 Fangqian Han Di Yu Jie Liu Qian Zhang Fengli Yu Lei Wang Maoshuai He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期581-591,I0013,共12页
The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfide... The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfides severely restrict the use of Li-S batteries in practical applications.Herein,a novel bimetallic LaNiO_(3) functional material with high electrical conductivity and catalytic property is prepared to act as a high-efficiency polysulfide shuttling stopper.The three LaNiO_(3) samples with different physical/chemical characteristics are obtained by controlling the calcination temperature.In conjunction with the high electrical conductivity and excellent catalytic properties of the as-prepared materials,the appropriate chemisorption toward polysulfides offers great potential to enhance electrochemical stability for highperformance Li-S batteries.Particularly,the Li-S cell with the separator modified by such functional material gives a specific capacity of 658 mA h g^(-1) after 500 cycles at a high current density of 2 C.Even with high sulfur loading of 6.05 mg cm^(-2),the Li-S battery still exhibits an areal specific capacity of 2.81 m A h cm^(-2)after 150 cycles.This work paves a new avenue for the rational design of materials for separator modification in high-performance Li-S batteries. 展开更多
关键词 Li-S battery Functional separator catalytic property Electrochemical stability Redox kinetics
下载PDF
Catalytic performance and kinetics of Au/γ-Al_2O_3 catalysts for low-temperature combustion of light alcohols
17
作者 邓谦 李小梅 +3 位作者 彭振山 龙云飞 相龙明 蔡铁军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第3期437-442,共6页
Au/γ-Al2O3 catalysts were prepared by deposition-precipitation method for the catalytic combustion of low concentration alcohol streams(methanol,ethanol,iso-propanol and n-propanol).The catalysts were characterized b... Au/γ-Al2O3 catalysts were prepared by deposition-precipitation method for the catalytic combustion of low concentration alcohol streams(methanol,ethanol,iso-propanol and n-propanol).The catalysts were characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffractometry(XRD) and energy dispersive X-ray micro analysis(EDS) techniques.The XPS results showed that there was only Au0 on the surface of catalysts.The XRD patterns showed that Au was presumably highly dispersed over γ-Al2O3.The temperatures for complete conversion of methanol,ethanol,iso-propanol and n-propanol with concentration of 2.0 g/m3 were 60,155,170 and 137 ℃,respectively,but they were completely mineralized into CO2 and H2O at 60,220,260 and 217 ℃ respectively over the optimized catalyst.The activity of the catalyst was stable in 130 h.The kinetics for the catalytic methanol elimination followed quasi-first order reaction expressed as r=0.652 8c0+0.084 2.The value of apparent activation energy is 54.7 kJ/mol in the range of reaction temperature. 展开更多
关键词 GOLD supported catalyst light alcohols low-temperature catalytic combustion kinetics
下载PDF
Kinetics and Selectivity in Thermal Hydrocracking and Catalytic Hydrocracking of Asphaltenes
18
作者 Zhao Yingxian Li Da (Ningbo Institute of Technology,Zhejiang University,Ningbo 315100) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2011年第1期24-31,共8页
A pentane-insoluble mixture of asphaltenes was processed by thermal hydrocracking and catalytic hydrocracking over Ni-Mo/γ-Al2O3 catalyst in a microbatch reactor at 430 ℃.The experimental data of asphaltene conversi... A pentane-insoluble mixture of asphaltenes was processed by thermal hydrocracking and catalytic hydrocracking over Ni-Mo/γ-Al2O3 catalyst in a microbatch reactor at 430 ℃.The experimental data of asphaltene conversion adequately fit second-order kinetics to give the apparent rate constants of 2.435×10-2 and 9.360×10-2 (wt frac)-1 min-1 for the two processes,respectively.A three-lump kinetic model is proposed to evaluate the rate constants for parallel reactions of asphaltenes producing liquid oil (k1) and gas+coke (k3),and consecutive reaction producing gas+coke (k2) from this liquid oil.The evaluated constants for asphaltenes hydrocracking,in the presence and absence of the catalyst,respectively,show that k1 is 2.430×10-2 and 9.355×10-2 (wt frac)-1 min-1,k2 is 2.426×10-2 and 6.347×10-3 min-1,and k3 is 5.416×10-5 and 4.803×10-5 (wt frac)-1 min-1.As compared with the thermal hydrocracking of asphaltenes,the catalytic hydrocracking of asphaltenes promotes liquid production and inhibits coke formation effectively. 展开更多
关键词 ASPHALTENES thermal hydrocracking catalytic hydrocracking kinetics SELECTIVITY
下载PDF
Kinetics of Treated Domestic Sewage Disinfection through Catalytic Oxidation with H2O2
19
作者 Gean Delise Leal Pasquali Vargas Deisi Spricigo Humberto Jorge Joss Regina de Fatima Peralta Muniz Moreira 《Journal of Chemistry and Chemical Engineering》 2011年第11期995-1001,共7页
The inactivation of bacterial cells through catalyzed oxidation using hydrogen peroxide as the primary oxidant agent is dependent on a series of factors, such as the concentration of the catalyst, the rate of hydroxyl... The inactivation of bacterial cells through catalyzed oxidation using hydrogen peroxide as the primary oxidant agent is dependent on a series of factors, such as the concentration of the catalyst, the rate of hydroxyl radical formation in the controlled decomposition of the oxidant agent, and the concentration and toxicity of hydrogen peroxide. The objective of this study was to develop a mathematical model able to predict the kinetics of the inactivation Escherichia coli and total coliforms cells present in treated domestic sewage through catalytic peroxidation. The catalyst used was iron oxide supported on mineral coal (called CP), and the effects of the operational conditions, including hydrogen peroxide concentration and dosage of catalyst, were evaluated. The results showed that the disinfection kinetics of the treated domestic sewage is dependent on the concentrations of hydrogen peroxide and catalyst dosage. The kinetic model was shown to be able to predict the behavior of the inactivation kinetics of the bacterium Escherichia coli ATCC-25922 when different concentrations of hydrogen peroxide (75 and 100 mg·L^-1) were used, regardless of the catalyst dosage. 展开更多
关键词 DISINFECTION domestic sewage kinetics catalytic oxidation Escherichia coli total coliforms
下载PDF
Benzene selective hydrogenation over supported Ni(nano-) particles catalysts: Catalytic and kinetics studies
20
作者 M.H.Peyrovi N.Parsafard Z.Mohammadian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期521-528,共8页
This report aims to reduce the benzene in a mixture of benzene and toluene as a model reaction using catalytic hydrogenation. In this research, we developed a series of catalysts with different supports such as Ni/HMS... This report aims to reduce the benzene in a mixture of benzene and toluene as a model reaction using catalytic hydrogenation. In this research, we developed a series of catalysts with different supports such as Ni/HMS, Ni/HZSM-5, Ni/HZSM5-HMS, Ni/Al2O3 and Ni/SiO2. Kinetic of this reaction was investigated under various hydrogen and benzene pressures. For more study, two kinetic models have also been selected and tested to describe the kinetics for this reaction. Both used models, the power law and Langmuir-Hinshelwood, provided a good fit toward the experimental data and allowed to determine the kinetic parameters. Among these catalysts, Ni/Al2O3 showed the maximum benzene conversion (99.19%) at 130℃ for benzene hydrogenation. The lowest toluene conversion was observed for Ni/SiO2. Furthermore, this catalyst presented high selectivity to benzene (75.26%) at 130℃. The catalytic performance (activity, selectivity and stability) and kinetics evaluations were shown that the Ni/SiO2 is an effective catalyst to hydrogenate benzene. It seems that the surface properties particularly pore size are effective parameter compared to other factors such as acidity and metal dispersion in this process. 展开更多
关键词 catalytic hydrogenation Power law model Langmuir-Hinshelwood mode Selectivity kinetics
下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部