It has been well established that carbon dioxide(CO_(2))is one of the main greenhouse gasses and a leading driver of climate change.The chemical conversion of CO_(2) to substitute natural gas(SNG)in the presence of re...It has been well established that carbon dioxide(CO_(2))is one of the main greenhouse gasses and a leading driver of climate change.The chemical conversion of CO_(2) to substitute natural gas(SNG)in the presence of renewable hydrogen is one of the most promising solutions by a well-known process called CO_(2) methanation.There have been comprehensive efforts in developing effective and efficient CO_(2) methanation catalytic systems.However,the choice of competitive and stable catalysts is still a monumental obstruction and a great challenge towards the commercialization and industrialization of CO_(2) methanation.It is necessary to emphasize the critical understandings of intrinsic and extrinsic interactions of catalyst components(active metal,support,promoter,etc.)for enhanced catalytic performance and stability during CO_(2) methanation.This study reviews the up-to-date developments on CO_(2) methanation catalysts and the optimal synergistic relationship between active metals,support,and promoters during the catalytic activity.The existing catalysts and their novel properties for enhanced CO_(2) methanation were elucidated using the state-of-the-art experimental and theoretical techniques.The selection of an appropriate synthesis method,catalytic activity for CO_(2) methanation,deactivation of the catalysts,and reaction mechanisms studies,have been explicitly compared and explained.Therefore,future efforts should be directed towards the sustainable developments of catalytic configurations for successful industrial applications of CO_(2) utilization to SNG using CO_(2) methanation.展开更多
Electrocatalytic CO_(2) reduction reaction (eCO_(2)RR) presents a promising approach for harnessing renewable energy and converting greenhouse gas (CO_(2)) into high value-added CO products.N-doped single atom (SA) an...Electrocatalytic CO_(2) reduction reaction (eCO_(2)RR) presents a promising approach for harnessing renewable energy and converting greenhouse gas (CO_(2)) into high value-added CO products.N-doped single atom (SA) and atomic-level metal nanocluster (MN) tandem catalysts with rich defects for eCO_(2)RR are reported,which achieved a maximum CO Faraday efficiency (FE_(CO)) of 97.7%(-0.7 V vs.RHE) in the H-type cell and maintained over 95% FE_(CO)at potentials from -0.18 to -0.73 V vs.RHE in the flow cell.Furthermore,the catalyst in the flow cell demonstrated a remarkably low onset potential of-0.14 V vs.RHE and the current density was approximately three times that of the H-type cell.Interestingly,XPS analysis indicates that carbon substrates containing defects have more pyridine-N content.DFT calculations and in-situ attenuated total reflection Fourier transform infrared support this finding by showing that the Ni-(N-C_(2))_(3) active sites with defect favors preferentially convert CO_(2)-to-CO.展开更多
The steep reduction in costs and systematic optimization of renewable electricity has ignited an intensifying interest in harnessing electroreduction of carbon dioxide(CO_(2)RR)for the generation of chemicals and fuel...The steep reduction in costs and systematic optimization of renewable electricity has ignited an intensifying interest in harnessing electroreduction of carbon dioxide(CO_(2)RR)for the generation of chemicals and fuels.The focus of research over the past few decades has been on the optimization of the electrode and the electrolyte environment.Notably,cation species in the latter have recently been found to dramatically alter the selectivity of CO_(2)RR and even their catalytic activity by multiple orders of magnitude.As a result,the selection of cations is a critical factor in designing catalytic interfaces with high selectivity and efficiency for targeted products.Informed decision-making regarding cation selection relies on a comprehensive understanding of prevailing electrolyte effect models that have been used to elucidate observed experimental trends.In this perspective,we review the hypotheses that explain how electrolyte cations influence CO_(2)RR by mechanisms such as through tuning of the interfacial electric field,buffering of the local pH,stabilization of the key intermediates and regulation of the interfacial water.Our endeavor is to elucidate the molecular mechanisms underpinning cation effects,thus fostering the evolution of more holistic and universally applicable predictive models.In this regard,we highlight the current challenges in this area of research,while also identifying potential avenues for future investigations.展开更多
Thermochemical conversion of fossil resources into fuels,chemicals,andmaterials has rapidly increased atmospheric CO_(2)levels,hindering global efforts toward achieving carbon neutrality.With the increasing push for s...Thermochemical conversion of fossil resources into fuels,chemicals,andmaterials has rapidly increased atmospheric CO_(2)levels,hindering global efforts toward achieving carbon neutrality.With the increasing push for sustainability,utilizing electrochemical technology to transform CO_(2)or biomass into value-added chemicals and to close the carbon cycle with sustainable energy sources represents a promising strategy.Expanding the scope of electrosynthesis technology is a prerequisite for the electrification of chemical manufacturing.To this end,constructing the C─N bond is considered a priority.However,a systematic review of electrocatalytic processes toward building C─N bonds using CO_(2)and biomass as carbon sources is not available.Accordingly,this review highlights the research progress in the electrosynthesis of organic nitrogen compounds from CO_(2)and biomass by C─N coupling reactions in view of catalytic materials,focusing on the enlightenment of traditional catalysis on C─N coupling and the understanding of the basis of electrochemical C─N coupling.The possibility of C─N bond in electrocatalysis is also examined from the standpoints of activation of substrates,coupling site,mechanism,and inhibition of hydrogen evolution reaction(HER).Finally,the challenges and prospects of electrocatalytic C─N coupling reactions with improved efficiency and selectivity for future development are discussed.展开更多
Electrochemical CO_(2) reduction reaction(CO_(2)RR)is a promising technology for mitigating global warming and storing renewable energy.Designing low-cost and efficient electrocatalysts with high selectivity is a prio...Electrochemical CO_(2) reduction reaction(CO_(2)RR)is a promising technology for mitigating global warming and storing renewable energy.Designing low-cost and efficient electrocatalysts with high selectivity is a priority to facilitate CO_(2) conversion.Halide ion(F^(-),Cl^(-),Br^(-),I^(-))modified electrocatalysts is a potential strategy to promote CO_(2) reduction and suppress the competitive hydrogen evolution reaction(HER).Therefore,a comprehensive review of the role and mechanism of halide ions in the CO_(2)RR process can help better guide the future design of efficient electrocatalysts.In this review,we first discuss the role of halide ions on the structure and morphology of electrocatalysts.Secondly,the relationship between the halide ions and the valence states of the active sites on the catalyst surface is further elaborated on.Thirdly,the mechanisms of halide in enhancing CO_(2) conversion efficiency are also summarized,including the involvement of halide ions in electron transfer and their influence on the reaction pathway.Finally,we conclude with a summary and future outlook.展开更多
Catalytic carbon dioxide(CO_(2))desorption has emerged as a promising approach to enhance the efficiency of CO_(2)capture while minimizing energy demands,crucial for advancing chemical absorption methods.This study in...Catalytic carbon dioxide(CO_(2))desorption has emerged as a promising approach to enhance the efficiency of CO_(2)capture while minimizing energy demands,crucial for advancing chemical absorption methods.This study investigates the catalytic potential of three metal phosphates(aluminium phosphate(AlPO4),cobaltous phosphate(Co_(3)(PO_(4))_(2)),and zinc phosphate(Zn_(3)(PO_(4))_(2)))in improving the MEA(monoethanolamine)-based CO_(2)absorption-desorption performance.Among the catalysts tested,AlPO_(4)demonstrated superior performance,enhancing CO_(2)absorption capacity by 4.2%to 9.3%and desorption capacity by 12.3%to 22.7%across five cycles.Notably,AlPO_(4)increased the CO_(2)desorption rate by over 104.4%at a desorption temperature of 81.3℃,simultaneously reducing the required sensible heat by 12.3%to 22.7%,compared to processes without catalysts.The improved efficiency is attributed to AlPO_(4)'s ability to effectively transfer hydrogen protons from protonated MEA to carbamate,thereby facilitating the decomposition of carbamate and regenerating CO_(2).This research introduces a viable,cost-effective,and eco-friendly solid acid catalyst strategy for CO_(2)desorption,contributing to the development of more energy-efficient CO_(2)capture technologies.展开更多
Reducing the ever-growing level of CO_(2)in the atmosphere is critical for the sustainable development of human society in the context of global warming.Integration of the capture and upgrading of CO_(2)is,therefore,h...Reducing the ever-growing level of CO_(2)in the atmosphere is critical for the sustainable development of human society in the context of global warming.Integration of the capture and upgrading of CO_(2)is,therefore,highly desirable since each process step is costly,both energetically and economically.Here,we report a CO_(2)direct air capture(DAC)and fixation process that produces methane.Low concentrations of CO_(2)(∼400 ppm)in the air are captured by an aqueous solution of sodium hydroxide to form carbonate.The carbonate is subsequently hydrogenated to methane,which is easily separated from the reaction system,catalyzed by TiO2-supported Ru in the aqueous phase with a selectivity of 99.9%among gas-phase products.The concurrent regenerated hydroxide,in turn,increases the alkalinity of the aqueous solution for further CO_(2)capture,thereby enabling this one-ofits-kind continuous CO_(2)capture and methanation process.Engineering simulations demonstrate the energy feasibility of this CO_(2)DAC and methanation process,highlighting its promise for potential largescale applications.展开更多
基金This research work was made possible by a Transdisciplinary Research Grant from Universiti Teknologi Malaysia(Grant No.06G52 and 06G53).
文摘It has been well established that carbon dioxide(CO_(2))is one of the main greenhouse gasses and a leading driver of climate change.The chemical conversion of CO_(2) to substitute natural gas(SNG)in the presence of renewable hydrogen is one of the most promising solutions by a well-known process called CO_(2) methanation.There have been comprehensive efforts in developing effective and efficient CO_(2) methanation catalytic systems.However,the choice of competitive and stable catalysts is still a monumental obstruction and a great challenge towards the commercialization and industrialization of CO_(2) methanation.It is necessary to emphasize the critical understandings of intrinsic and extrinsic interactions of catalyst components(active metal,support,promoter,etc.)for enhanced catalytic performance and stability during CO_(2) methanation.This study reviews the up-to-date developments on CO_(2) methanation catalysts and the optimal synergistic relationship between active metals,support,and promoters during the catalytic activity.The existing catalysts and their novel properties for enhanced CO_(2) methanation were elucidated using the state-of-the-art experimental and theoretical techniques.The selection of an appropriate synthesis method,catalytic activity for CO_(2) methanation,deactivation of the catalysts,and reaction mechanisms studies,have been explicitly compared and explained.Therefore,future efforts should be directed towards the sustainable developments of catalytic configurations for successful industrial applications of CO_(2) utilization to SNG using CO_(2) methanation.
基金supported by the Tianjin Science and Technology support key projects (20JCYBJC01420)。
文摘Electrocatalytic CO_(2) reduction reaction (eCO_(2)RR) presents a promising approach for harnessing renewable energy and converting greenhouse gas (CO_(2)) into high value-added CO products.N-doped single atom (SA) and atomic-level metal nanocluster (MN) tandem catalysts with rich defects for eCO_(2)RR are reported,which achieved a maximum CO Faraday efficiency (FE_(CO)) of 97.7%(-0.7 V vs.RHE) in the H-type cell and maintained over 95% FE_(CO)at potentials from -0.18 to -0.73 V vs.RHE in the flow cell.Furthermore,the catalyst in the flow cell demonstrated a remarkably low onset potential of-0.14 V vs.RHE and the current density was approximately three times that of the H-type cell.Interestingly,XPS analysis indicates that carbon substrates containing defects have more pyridine-N content.DFT calculations and in-situ attenuated total reflection Fourier transform infrared support this finding by showing that the Ni-(N-C_(2))_(3) active sites with defect favors preferentially convert CO_(2)-to-CO.
基金Financial support from National Natural Science Foundation of China(Nos.22109099 and 22072101)“Chen Guang”Project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation(No.21CGA66)+1 种基金Natural Science Foundation of Jiangsu Province(No.BK20211306)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘The steep reduction in costs and systematic optimization of renewable electricity has ignited an intensifying interest in harnessing electroreduction of carbon dioxide(CO_(2)RR)for the generation of chemicals and fuels.The focus of research over the past few decades has been on the optimization of the electrode and the electrolyte environment.Notably,cation species in the latter have recently been found to dramatically alter the selectivity of CO_(2)RR and even their catalytic activity by multiple orders of magnitude.As a result,the selection of cations is a critical factor in designing catalytic interfaces with high selectivity and efficiency for targeted products.Informed decision-making regarding cation selection relies on a comprehensive understanding of prevailing electrolyte effect models that have been used to elucidate observed experimental trends.In this perspective,we review the hypotheses that explain how electrolyte cations influence CO_(2)RR by mechanisms such as through tuning of the interfacial electric field,buffering of the local pH,stabilization of the key intermediates and regulation of the interfacial water.Our endeavor is to elucidate the molecular mechanisms underpinning cation effects,thus fostering the evolution of more holistic and universally applicable predictive models.In this regard,we highlight the current challenges in this area of research,while also identifying potential avenues for future investigations.
文摘Thermochemical conversion of fossil resources into fuels,chemicals,andmaterials has rapidly increased atmospheric CO_(2)levels,hindering global efforts toward achieving carbon neutrality.With the increasing push for sustainability,utilizing electrochemical technology to transform CO_(2)or biomass into value-added chemicals and to close the carbon cycle with sustainable energy sources represents a promising strategy.Expanding the scope of electrosynthesis technology is a prerequisite for the electrification of chemical manufacturing.To this end,constructing the C─N bond is considered a priority.However,a systematic review of electrocatalytic processes toward building C─N bonds using CO_(2)and biomass as carbon sources is not available.Accordingly,this review highlights the research progress in the electrosynthesis of organic nitrogen compounds from CO_(2)and biomass by C─N coupling reactions in view of catalytic materials,focusing on the enlightenment of traditional catalysis on C─N coupling and the understanding of the basis of electrochemical C─N coupling.The possibility of C─N bond in electrocatalysis is also examined from the standpoints of activation of substrates,coupling site,mechanism,and inhibition of hydrogen evolution reaction(HER).Finally,the challenges and prospects of electrocatalytic C─N coupling reactions with improved efficiency and selectivity for future development are discussed.
基金This study was supported financially by the Fundamental Research Funds for the Central Universities(2021XD-A04-2)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications,P.R.China).Additionally,Zebi Zhao acknowledges the financial assistance from China Scholarship Council(CSC,No.202206470057)Y.L.acknowledges support and funding from A*STAR Career Development Award(Project No.202D800037).
文摘Electrochemical CO_(2) reduction reaction(CO_(2)RR)is a promising technology for mitigating global warming and storing renewable energy.Designing low-cost and efficient electrocatalysts with high selectivity is a priority to facilitate CO_(2) conversion.Halide ion(F^(-),Cl^(-),Br^(-),I^(-))modified electrocatalysts is a potential strategy to promote CO_(2) reduction and suppress the competitive hydrogen evolution reaction(HER).Therefore,a comprehensive review of the role and mechanism of halide ions in the CO_(2)RR process can help better guide the future design of efficient electrocatalysts.In this review,we first discuss the role of halide ions on the structure and morphology of electrocatalysts.Secondly,the relationship between the halide ions and the valence states of the active sites on the catalyst surface is further elaborated on.Thirdly,the mechanisms of halide in enhancing CO_(2) conversion efficiency are also summarized,including the involvement of halide ions in electron transfer and their influence on the reaction pathway.Finally,we conclude with a summary and future outlook.
基金supports from the China Postdoctoral Science Foundation(2023M743768)National Natural Science Foundation of China(52006112)Xuzhou Bureau of Science and Technology(KC23293).
文摘Catalytic carbon dioxide(CO_(2))desorption has emerged as a promising approach to enhance the efficiency of CO_(2)capture while minimizing energy demands,crucial for advancing chemical absorption methods.This study investigates the catalytic potential of three metal phosphates(aluminium phosphate(AlPO4),cobaltous phosphate(Co_(3)(PO_(4))_(2)),and zinc phosphate(Zn_(3)(PO_(4))_(2)))in improving the MEA(monoethanolamine)-based CO_(2)absorption-desorption performance.Among the catalysts tested,AlPO_(4)demonstrated superior performance,enhancing CO_(2)absorption capacity by 4.2%to 9.3%and desorption capacity by 12.3%to 22.7%across five cycles.Notably,AlPO_(4)increased the CO_(2)desorption rate by over 104.4%at a desorption temperature of 81.3℃,simultaneously reducing the required sensible heat by 12.3%to 22.7%,compared to processes without catalysts.The improved efficiency is attributed to AlPO_(4)'s ability to effectively transfer hydrogen protons from protonated MEA to carbamate,thereby facilitating the decomposition of carbamate and regenerating CO_(2).This research introduces a viable,cost-effective,and eco-friendly solid acid catalyst strategy for CO_(2)desorption,contributing to the development of more energy-efficient CO_(2)capture technologies.
基金the Natural Science Foundation of China(grant nos.21725301,21932002,21821004,91645115,51872008,22172183,22172150,and 22222306)the National Key R&D Program of China(grant nos.2017YFB060220 and 2021YFA-1502804)+3 种基金the Beijing Outstanding Young Scientists Projects(grant nos.BJJWZYJH01201910005018 and BJJWZYJH01201914430039)the Strategic Priority Research Program of the Chinese Academy of Science(grant no.XDB0450102)the K.C.Wong Education Foundation(grant no.GJTD-2020-15)the Innovation Program for Quantum Science and Technology(grant no.2021ZD0303302).
文摘Reducing the ever-growing level of CO_(2)in the atmosphere is critical for the sustainable development of human society in the context of global warming.Integration of the capture and upgrading of CO_(2)is,therefore,highly desirable since each process step is costly,both energetically and economically.Here,we report a CO_(2)direct air capture(DAC)and fixation process that produces methane.Low concentrations of CO_(2)(∼400 ppm)in the air are captured by an aqueous solution of sodium hydroxide to form carbonate.The carbonate is subsequently hydrogenated to methane,which is easily separated from the reaction system,catalyzed by TiO2-supported Ru in the aqueous phase with a selectivity of 99.9%among gas-phase products.The concurrent regenerated hydroxide,in turn,increases the alkalinity of the aqueous solution for further CO_(2)capture,thereby enabling this one-ofits-kind continuous CO_(2)capture and methanation process.Engineering simulations demonstrate the energy feasibility of this CO_(2)DAC and methanation process,highlighting its promise for potential largescale applications.