Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER...Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER). In this paper, LiaSiO4 ceramic pebbles deposited with catalytic metals, including Pt, Pd, Ru and Ir, were prepared by wet impregnation method. The metal particles on Li4SiO4 pebble exhibit a good promotion of hydrogen isotope exchange reactions in H2-D20 gas system, with conversion equilibrium temperature reduction of 200-300 ~C. The out-of-pile tritium release experiments were performed using 1.0 wt% Pt/Li4SiO4 and Li4SiO4 pebbles irradiated in a thermal neutron reactor. The thermal desorption spectroscopy shows that Pt was effective to increase the tritium release rate at lower temperatures, and the ratio of tritium molecule (HT) to tritiated water (HTO) of 1.0 wt% Pt/LiaSiO4 was much more than that of Li4SiO4, which released mainly as HTO. Thus, catalytic metals deposited on LiaSiO4 pebble may help to accelerate the recovery of bred tritium particularly in low temperature region, and increase the tritium molecule form released from the tritium breedin~ materials.展开更多
Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in t...Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in the vanadium species and the formation of vanadates on the TiO2 support, and increased the amount of surface acid sites and the strength of these acids. The strong acid sites might be responsible for the high N2 selectivity at higher temperatures. Among these catalysts, Cu-V/TiO2 showed the highest activity and N2 selectivity at 225-375 ~C. The results of X-ray photo- electron spectroscopy, NH3-temperature-programmed desorption, and in-situ diffuse reflectance infrared Fourier transform spectroscopy suggested that the improved performance was probably due to more active surface oxygen species and increased strong surface acid sites. The outstanding activity, stability, and SO2/H2O durability of Cu-V/TiO2 make it a candidate to be a NOx removal catalyst for stationary flue gas.展开更多
Spent Li-ion battery(LIB)recycling has become a challenge with the rapidly developing electric vehicle(EV)industry.To address the problems of high cost and low recovery of Li in the recycling of spent LIBs using tradi...Spent Li-ion battery(LIB)recycling has become a challenge with the rapidly developing electric vehicle(EV)industry.To address the problems of high cost and low recovery of Li in the recycling of spent LIBs using traditional hydrometallurgical processes,we developed an alkali metal catalytic carbothermic reduction method to recover spent LiNi_(x)Co_(y)Mn_(z)O_(2)(NCM).Using alkali metal catalysts,such as NaOH,significantly reduced the temperature required for carbothermic NCM material reduction and realized targeted control of the phase of the reduction product,where Li was first separated by prior water leaching,followed by Ni,Co,and Mn recycling by acid leaching.The optimized carbothermic reduction conditions were a reaction time of 3 h,temperature of 550℃,NaOH dosage of 15 wt%,and graphite dosage of 15 wt%.The Li leaching efficiency reached 78.5 wt%during water leaching.And during acid leaching,the Ni,Co and Mn leaching efficiencies were 99.8 wt%,99.7 wt%,and 99.5wt%,respectively.This study provides strong technical support for the development of LIB industry.展开更多
Five types of KNO_3-NH_4VO_3-rare earth metal nitrate(K-V-rare earth metal) catalysts supported on a-porous alumina ceramic substrates were prepared by a coating method. All the catalysts were characterized by X-ray...Five types of KNO_3-NH_4VO_3-rare earth metal nitrate(K-V-rare earth metal) catalysts supported on a-porous alumina ceramic substrates were prepared by a coating method. All the catalysts were characterized by X-ray diffraction and thermogravimetry/differential scanning calorimetry. Catalytic activities were evaluated by a soot oxidation reaction using a temperature-programmed reaction system. The experimental results show that the addition of rare earth metal compound could obviously improve the catalytic activities of the K-V-based catalysts. The proper ratio of K-V-rare earth metal catalysts can not only lower the soot onset ignition temperature, but also quicken the soot oxidation rate. The crystalline phases formed by K, V, and rare earth metal are stable.展开更多
By virtue of the atom-and step-economy, utilization of simple arenes as a supplant of pre-prepared aryl metal species or aryl halides for the synthesis of arylated chiral molecules has attracted great attention from t...By virtue of the atom-and step-economy, utilization of simple arenes as a supplant of pre-prepared aryl metal species or aryl halides for the synthesis of arylated chiral molecules has attracted great attention from the synthetic community. While transition-metal-catalyzed enantioselective diarylation of tethered alkenes has been employed to prepare important chiral cyclic compounds, the direct use of simple arenes as aryl precursors is still underdeveloped, probably due to the difficulties in the effective control of the reactivity, site-selectivity and/or enantioselectivity. Herein we report an asymmetric Pd/Ag dual metal catalytic system for the non-directed, site-and enantioselective domino Heck/intermolecular C–H functionalization of arenes.Mechanistic studies showed that Pd and Ag act in cooperation in the catalysis and the chiral bisphosphine ligand plays a bifunctional role, i.e., assisting the silver species in the cleavage of the aryl C–H bond, while inducing the enantioselectivity on direct complexation with palladium. This method provides an efficient approach to the corresponding chiral oxindoles with good enantiomeric excesses from a broad scope of arenes, including fluoroarenes, heteroarenes and several complex products derived from medicines or natural products.展开更多
Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray p...Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), temperatureprogrammed desorption of NH3(NH3-TPD), H2temperature-programmed reduction(H2-TPR), and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM). The results showed that the addition of Mo effectively improved the activity and stability of the Pd/Al2O3catalyst by increasing the dispersion of Pd active components, changing the partial oxidation state of palladium and increasing the oxygen species concentration on the surface of catalyst. In the case of the Pd-Mo/Al2O3catalyst,benzene conversion of 90% was obtained at temperatures as low as 190°C, which was 45°C lower than that for similar performance with the Pd/Al2O3catalyst. Moreover, the 1.0% Pd-5% Mo/Al2O3catalyst was more active than the 2.0% Pd/Al2O3catalyst. It was concluded that Pd and Mo have a synergistic effect in benzene catalytic combustion.展开更多
High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compoun...High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compounds. The composites retained high surface areas and pore volumes comparable with those of undoped γ-Al2O3 and the presence of the transition metal ions enhanced their surface acidic properties. The catalytic activity of the prepared catalysts in the oxidation of 1,2-dichloroethane (DCE) was studied in the temperature range of 250-400℃. The catalytic activity and product selectivity were strongly dependent on the presence and the type of dopant ion. While Cu^2+- and Cr^3+-containing catalysts showed 100% conversion at 300℃ and 350℃, V3+-containing catalyst showed considerably lower conversion. Furthermore, while the major products of the reactions over γ-alumina were vinyl chloride (C2H3Cl) and hydrogen chloride (HCl) at all temperatures, Cu- and Cr-doped catalysts showed siguiticantly stronger capability for deep oxidation to CO2.展开更多
As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH rad...As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co3O4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia(50 mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co3O4 molar ratio 8:2, calcined at 500°C for 3 hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO2-4 and HCO-3 could inhibit the catalytic activity while CO2-3 and Br-could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia.展开更多
Three groups of cobalt mixed oxide catalysts(Mg/Zn-Co, Mg/Zn-Ce-C, K/Na-Mg/Zn-Ce-Co)were prepared by sol-gel or impregnation methods. The synergistic effects of transition metal, rare earth metal and alkali metal on...Three groups of cobalt mixed oxide catalysts(Mg/Zn-Co, Mg/Zn-Ce-C, K/Na-Mg/Zn-Ce-Co)were prepared by sol-gel or impregnation methods. The synergistic effects of transition metal, rare earth metal and alkali metal on cobalt mixed catalysts for nitrous oxide(N2O)decomposing to N2 and O2were investigated. The experimental results revealed that the catalytic activity for N2 O decomposition was promoted as Co2+was replaced partially by Zn2+/Mg2+, moreover, the characterization analysis by XRD and XPS showed that Zn2+/Mg2+replaced Co2+successfully into the spinel structure of Co3O4 and promoted significantly the catalytic activity. Especially, the addition of CeO2 and K2O/Na2O decreased the binding energy and resulted in an increase in the density of the electron cloud around Co and an improvement of the catalytic activity. Of the investigated cobalt mixed catalysts, the best catalytic activity was shown by 2% K-Zn0.5-Ce0.05-Co catalyst.展开更多
基金supported by the Development Fund of China Academy of Engineering Physics (No.2010B0301035)the National Magnetic Confinement Fusion Science Program (No. 2010GB112004)
文摘Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER). In this paper, LiaSiO4 ceramic pebbles deposited with catalytic metals, including Pt, Pd, Ru and Ir, were prepared by wet impregnation method. The metal particles on Li4SiO4 pebble exhibit a good promotion of hydrogen isotope exchange reactions in H2-D20 gas system, with conversion equilibrium temperature reduction of 200-300 ~C. The out-of-pile tritium release experiments were performed using 1.0 wt% Pt/Li4SiO4 and Li4SiO4 pebbles irradiated in a thermal neutron reactor. The thermal desorption spectroscopy shows that Pt was effective to increase the tritium release rate at lower temperatures, and the ratio of tritium molecule (HT) to tritiated water (HTO) of 1.0 wt% Pt/LiaSiO4 was much more than that of Li4SiO4, which released mainly as HTO. Thus, catalytic metals deposited on LiaSiO4 pebble may help to accelerate the recovery of bred tritium particularly in low temperature region, and increase the tritium molecule form released from the tritium breedin~ materials.
基金supported by the National Natural Science Foundation of China (21303099)the National Basic Research Program of China(973 Program,2014CB660803)+1 种基金the Shanghai Municipal Education Commission(14ZZ097, B.3704713001)the Research Fund for Innovation Program of Shanghai University (K.10040713003)~~
文摘Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in the vanadium species and the formation of vanadates on the TiO2 support, and increased the amount of surface acid sites and the strength of these acids. The strong acid sites might be responsible for the high N2 selectivity at higher temperatures. Among these catalysts, Cu-V/TiO2 showed the highest activity and N2 selectivity at 225-375 ~C. The results of X-ray photo- electron spectroscopy, NH3-temperature-programmed desorption, and in-situ diffuse reflectance infrared Fourier transform spectroscopy suggested that the improved performance was probably due to more active surface oxygen species and increased strong surface acid sites. The outstanding activity, stability, and SO2/H2O durability of Cu-V/TiO2 make it a candidate to be a NOx removal catalyst for stationary flue gas.
基金financially supported by the National Key Research and Development Program of China(No.2018YFC1902205)the National Natural Science Foundation of China(Nos.51834008 and 52104398)China Postdoctoral Science Foundation(No.2022T150371)。
文摘Spent Li-ion battery(LIB)recycling has become a challenge with the rapidly developing electric vehicle(EV)industry.To address the problems of high cost and low recovery of Li in the recycling of spent LIBs using traditional hydrometallurgical processes,we developed an alkali metal catalytic carbothermic reduction method to recover spent LiNi_(x)Co_(y)Mn_(z)O_(2)(NCM).Using alkali metal catalysts,such as NaOH,significantly reduced the temperature required for carbothermic NCM material reduction and realized targeted control of the phase of the reduction product,where Li was first separated by prior water leaching,followed by Ni,Co,and Mn recycling by acid leaching.The optimized carbothermic reduction conditions were a reaction time of 3 h,temperature of 550℃,NaOH dosage of 15 wt%,and graphite dosage of 15 wt%.The Li leaching efficiency reached 78.5 wt%during water leaching.And during acid leaching,the Ni,Co and Mn leaching efficiencies were 99.8 wt%,99.7 wt%,and 99.5wt%,respectively.This study provides strong technical support for the development of LIB industry.
基金Funded by the National Natural Science Foundation of China(Nos.21606140,21776147,and 51373086)the Science-Technology Program in Higher Education Institutions of Shandong Province,China(J11LD05)the Qingdao Municipal Science and Technology Commission,China(13-1-4-154-jch)
文摘Five types of KNO_3-NH_4VO_3-rare earth metal nitrate(K-V-rare earth metal) catalysts supported on a-porous alumina ceramic substrates were prepared by a coating method. All the catalysts were characterized by X-ray diffraction and thermogravimetry/differential scanning calorimetry. Catalytic activities were evaluated by a soot oxidation reaction using a temperature-programmed reaction system. The experimental results show that the addition of rare earth metal compound could obviously improve the catalytic activities of the K-V-based catalysts. The proper ratio of K-V-rare earth metal catalysts can not only lower the soot onset ignition temperature, but also quicken the soot oxidation rate. The crystalline phases formed by K, V, and rare earth metal are stable.
基金supported by the National Key R&D Program of China (2021YFA1500100)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0610000)+2 种基金the National Natural Science Foundation of China (92256303, 22171278, 21821002)the Shanghai Science and Technology Committee (23ZR1482400)the Natural Science Foundation of Ningbo (2023J034)。
文摘By virtue of the atom-and step-economy, utilization of simple arenes as a supplant of pre-prepared aryl metal species or aryl halides for the synthesis of arylated chiral molecules has attracted great attention from the synthetic community. While transition-metal-catalyzed enantioselective diarylation of tethered alkenes has been employed to prepare important chiral cyclic compounds, the direct use of simple arenes as aryl precursors is still underdeveloped, probably due to the difficulties in the effective control of the reactivity, site-selectivity and/or enantioselectivity. Herein we report an asymmetric Pd/Ag dual metal catalytic system for the non-directed, site-and enantioselective domino Heck/intermolecular C–H functionalization of arenes.Mechanistic studies showed that Pd and Ag act in cooperation in the catalysis and the chiral bisphosphine ligand plays a bifunctional role, i.e., assisting the silver species in the cleavage of the aryl C–H bond, while inducing the enantioselectivity on direct complexation with palladium. This method provides an efficient approach to the corresponding chiral oxindoles with good enantiomeric excesses from a broad scope of arenes, including fluoroarenes, heteroarenes and several complex products derived from medicines or natural products.
基金supported by the National High-Tech Research and Development Program (863) of China (No. 2008AA06XK1480855)
文摘Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), temperatureprogrammed desorption of NH3(NH3-TPD), H2temperature-programmed reduction(H2-TPR), and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM). The results showed that the addition of Mo effectively improved the activity and stability of the Pd/Al2O3catalyst by increasing the dispersion of Pd active components, changing the partial oxidation state of palladium and increasing the oxygen species concentration on the surface of catalyst. In the case of the Pd-Mo/Al2O3catalyst,benzene conversion of 90% was obtained at temperatures as low as 190°C, which was 45°C lower than that for similar performance with the Pd/Al2O3catalyst. Moreover, the 1.0% Pd-5% Mo/Al2O3catalyst was more active than the 2.0% Pd/Al2O3catalyst. It was concluded that Pd and Mo have a synergistic effect in benzene catalytic combustion.
基金United Arab Emirates University through NRF grant, 2011
文摘High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compounds. The composites retained high surface areas and pore volumes comparable with those of undoped γ-Al2O3 and the presence of the transition metal ions enhanced their surface acidic properties. The catalytic activity of the prepared catalysts in the oxidation of 1,2-dichloroethane (DCE) was studied in the temperature range of 250-400℃. The catalytic activity and product selectivity were strongly dependent on the presence and the type of dopant ion. While Cu^2+- and Cr^3+-containing catalysts showed 100% conversion at 300℃ and 350℃, V3+-containing catalyst showed considerably lower conversion. Furthermore, while the major products of the reactions over γ-alumina were vinyl chloride (C2H3Cl) and hydrogen chloride (HCl) at all temperatures, Cu- and Cr-doped catalysts showed siguiticantly stronger capability for deep oxidation to CO2.
基金supported the National Natural Science Foundation of China (Nos. 51164014 and 51568023)
文摘As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co3O4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia(50 mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co3O4 molar ratio 8:2, calcined at 500°C for 3 hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO2-4 and HCO-3 could inhibit the catalytic activity while CO2-3 and Br-could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia.
基金supported by the Hi-Tech Research and Development Program (863) of China (No. 2012AA062501)the Natural Science Foundation of Hubei Province (No. 2009CDB246)the Postgraduates Innovation Foundation of Huazhong University of Science and Technology of China (No. HF-08-11-2011-261)
文摘Three groups of cobalt mixed oxide catalysts(Mg/Zn-Co, Mg/Zn-Ce-C, K/Na-Mg/Zn-Ce-Co)were prepared by sol-gel or impregnation methods. The synergistic effects of transition metal, rare earth metal and alkali metal on cobalt mixed catalysts for nitrous oxide(N2O)decomposing to N2 and O2were investigated. The experimental results revealed that the catalytic activity for N2 O decomposition was promoted as Co2+was replaced partially by Zn2+/Mg2+, moreover, the characterization analysis by XRD and XPS showed that Zn2+/Mg2+replaced Co2+successfully into the spinel structure of Co3O4 and promoted significantly the catalytic activity. Especially, the addition of CeO2 and K2O/Na2O decreased the binding energy and resulted in an increase in the density of the electron cloud around Co and an improvement of the catalytic activity. Of the investigated cobalt mixed catalysts, the best catalytic activity was shown by 2% K-Zn0.5-Ce0.05-Co catalyst.