The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ...The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ((NH4)2S2O8) with nitrilo triacetic acid as an activator in microemulsion and H2SO4 medium. Under optimum conditions, there was the linearity of the calibration curve in the concentration range from 0 to 20 μg/L Au(Ⅲ) at 520 nm. The relative standard deviation was 3.0% with a correlation coefficient of 0.9986. The detection limit achieved was 9.75 × 10^-5 μg/mL. A new method using a column packed with sulfhydryl dextrose gel (SDG) as a solid-phase extractant has been developed for the preconcentration and separation of Au(Ⅲ) ions. The method has been applied to the determination of trace gold with satisfactory results.展开更多
A highly sensitive and selective catalytic kinetic spectrophotometric method for the determination of Cu(Ⅱ) is proposed. It is based on the catalytic effect of Cu(Ⅱ) on the oxidation of glutathione(GSH) by potassium...A highly sensitive and selective catalytic kinetic spectrophotometric method for the determination of Cu(Ⅱ) is proposed. It is based on the catalytic effect of Cu(Ⅱ) on the oxidation of glutathione(GSH) by potassium hexacyanoferrate(Ⅲ) in acidic medium at 25.0℃. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of oxidant at 420 nm using the fix-time method. Under the optimum conditions, the proposed method allows the determination of Cu(Ⅱ) in a range of 0-35.0 ng m L^(-1) with good precision and accuracy and the limit of detection is down to 0.04 ng m L^(-1). The relative standard deviation(RSD) is 1.02%. The reaction orders with respect to each reagent are found to be 1, 1/2, and 1/2 for potassium hexacyanoferrate(Ⅲ), glutathione and Cu(Ⅱ) respectively. On the basis of these values, the rate equation is obtained and the possible mechanism is established. Moreover, few anions and cations can interfere with the determination of Cu(Ⅱ). The new proposed method can be successfully used to the determination of Cu(Ⅱ) in fresh water samples and seawater samples. It is found that the proposed method has fairly good selectivity, high sensitivity, good repeatability, simplicity and rapidity.展开更多
In the H2SO4 medium and in the presence of dodecylbenzene sulfonic acid sodiumsalt (DBS), dimethyl yellow (R) could emit strong and stable solid substrate room temperature phosphorescence (RTP) on filter paper. And Na...In the H2SO4 medium and in the presence of dodecylbenzene sulfonic acid sodiumsalt (DBS), dimethyl yellow (R) could emit strong and stable solid substrate room temperature phosphorescence (RTP) on filter paper. And NaIO4 could oxidize R to cause the RTP quenching. Arsenic(V) could catalyze the reaction of NaIO4 oxidizing R, which caused the RTP sharply quenching. The reducing value of phosphorescence intensity (ΔIp) for the system with DBS is 3.3 times higher than that without DBS. Moreover, the ΔIp is proportional to the concentration of As(V). Based on the facts above, a new RTP quenching method for the determination of trace As(V) has been established.展开更多
It was found that micro amounts of oxalate showed a very strong catalytic effect on the slow reaction between K 2Cr 2O 7 and Orange Ⅳ in a diluted sulfuric acid medium in a water bath at 70 ℃ . Orange Ⅳ exhib...It was found that micro amounts of oxalate showed a very strong catalytic effect on the slow reaction between K 2Cr 2O 7 and Orange Ⅳ in a diluted sulfuric acid medium in a water bath at 70 ℃ . Orange Ⅳ exhibited a sensitive second order derivative polarographic wave at -0 50 V( vs . SCE). This provides the basis for a sensitive and selective catalytic kinetic method for oxalate determination with second order derivative oscillopolarography. The effects of sulphuric acid, K 2Cr 2O 7, and orange Ⅳ concentrations, reaction temperature and reaction time were investigated. A calibration curve of oxalate in the range of 0 1-2 0 μg/mL was obtained by the fixed time procedure. The detection limit was 0 03 μg/ mL. The possible interference from co existing substances or ions was examined. The new method has a high sensitivity and a good selectivity compared to other existing methods for oxalic acid determination. It has been applied to the determination of micro amounts of oxalate in real urine samples with satisfactory results.展开更多
A series of CeO2-Co3O4 mixed oxide catalysts with different Co/(Co+Ce) atomic ratios were synthesized by citric acid sol-gel method and used for catalytic oxidation of formaldehyde(HCHO). Many techniques such as ...A series of CeO2-Co3O4 mixed oxide catalysts with different Co/(Co+Ce) atomic ratios were synthesized by citric acid sol-gel method and used for catalytic oxidation of formaldehyde(HCHO). Many techniques such as Brumauer-Emmett-Teller(BET), X-ray diffraction(XRD), scanning electron microscopy(FE-SEM), temperature programmed reduction(H_2-TPR), temperature-programmed desorption(O_2-TPD) and X-ray photoelectron spectroscopy(XPS) were used to characterize catalysts. The results of catalytic performance tests showed that the catalyst CeO_2-Co_3O_4 with Co/(Co+Ce) ratio of 0.95 exhibited the best performance, and the temperature of complete oxidation of HCHO was 80 oC. The analytical results indicated that the addition of CeO_2 enhanced the specific surface area of Co_3O_4 and the fine dispersion of both of them. Moreover, the strong interaction between CeO_2 and Co_3O_4 resulted in the unique redox properties, which enhanced the available surface active oxygen and led to high valence state of cobalt oxide species. All those effects played crucial roles in the excellent performance of CeO_2-Co_3O_4 for the HCHO oxidation.展开更多
Ti/SnO2–Sb electrode has a good effect on the removal of organic pollutants. But its short service life limits its large-scale application in industry. Electro-catalytic degradation performances and service life of t...Ti/SnO2–Sb electrode has a good effect on the removal of organic pollutants. But its short service life limits its large-scale application in industry. Electro-catalytic degradation performances and service life of the electrode can be significantly improved by doping rare earth(RE) ions into the oxide coating of Ti/SnO2–Sb electrode. Ti/SnO2–Sb electrodes doped with different RE elements(Ce, Dy, La, and Eu) were prepared by the thermal decomposition method at 550 ℃. Electro-catalytic degradation performances of electrodes doped with different RE elements were evaluated by linear sweep voltammetry(LSV) and Tafel curves. During the electrolysis,the conversion of p-nitrophenol was performed with these electrodes as anodes under galvanostatic control. The structures and morphologies of the surface coating of the electrodes were characterized by scanning electron microscope(SEM). The results demonstrate that the electro-catalytic degradation performances of Ti/SnO2–Sb electrodes are improved to different levels by doping different RE ions. Improved Ti/SnO2–Sb electrodes by the introduction of different RE have higher oxygen evolution potential, better electro-catalysis ability, better coverage,and longer electrode life.展开更多
High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compoun...High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compounds. The composites retained high surface areas and pore volumes comparable with those of undoped γ-Al2O3 and the presence of the transition metal ions enhanced their surface acidic properties. The catalytic activity of the prepared catalysts in the oxidation of 1,2-dichloroethane (DCE) was studied in the temperature range of 250-400℃. The catalytic activity and product selectivity were strongly dependent on the presence and the type of dopant ion. While Cu^2+- and Cr^3+-containing catalysts showed 100% conversion at 300℃ and 350℃, V3+-containing catalyst showed considerably lower conversion. Furthermore, while the major products of the reactions over γ-alumina were vinyl chloride (C2H3Cl) and hydrogen chloride (HCl) at all temperatures, Cu- and Cr-doped catalysts showed siguiticantly stronger capability for deep oxidation to CO2.展开更多
文摘The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ((NH4)2S2O8) with nitrilo triacetic acid as an activator in microemulsion and H2SO4 medium. Under optimum conditions, there was the linearity of the calibration curve in the concentration range from 0 to 20 μg/L Au(Ⅲ) at 520 nm. The relative standard deviation was 3.0% with a correlation coefficient of 0.9986. The detection limit achieved was 9.75 × 10^-5 μg/mL. A new method using a column packed with sulfhydryl dextrose gel (SDG) as a solid-phase extractant has been developed for the preconcentration and separation of Au(Ⅲ) ions. The method has been applied to the determination of trace gold with satisfactory results.
文摘A highly sensitive and selective catalytic kinetic spectrophotometric method for the determination of Cu(Ⅱ) is proposed. It is based on the catalytic effect of Cu(Ⅱ) on the oxidation of glutathione(GSH) by potassium hexacyanoferrate(Ⅲ) in acidic medium at 25.0℃. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of oxidant at 420 nm using the fix-time method. Under the optimum conditions, the proposed method allows the determination of Cu(Ⅱ) in a range of 0-35.0 ng m L^(-1) with good precision and accuracy and the limit of detection is down to 0.04 ng m L^(-1). The relative standard deviation(RSD) is 1.02%. The reaction orders with respect to each reagent are found to be 1, 1/2, and 1/2 for potassium hexacyanoferrate(Ⅲ), glutathione and Cu(Ⅱ) respectively. On the basis of these values, the rate equation is obtained and the possible mechanism is established. Moreover, few anions and cations can interfere with the determination of Cu(Ⅱ). The new proposed method can be successfully used to the determination of Cu(Ⅱ) in fresh water samples and seawater samples. It is found that the proposed method has fairly good selectivity, high sensitivity, good repeatability, simplicity and rapidity.
文摘In the H2SO4 medium and in the presence of dodecylbenzene sulfonic acid sodiumsalt (DBS), dimethyl yellow (R) could emit strong and stable solid substrate room temperature phosphorescence (RTP) on filter paper. And NaIO4 could oxidize R to cause the RTP quenching. Arsenic(V) could catalyze the reaction of NaIO4 oxidizing R, which caused the RTP sharply quenching. The reducing value of phosphorescence intensity (ΔIp) for the system with DBS is 3.3 times higher than that without DBS. Moreover, the ΔIp is proportional to the concentration of As(V). Based on the facts above, a new RTP quenching method for the determination of trace As(V) has been established.
文摘It was found that micro amounts of oxalate showed a very strong catalytic effect on the slow reaction between K 2Cr 2O 7 and Orange Ⅳ in a diluted sulfuric acid medium in a water bath at 70 ℃ . Orange Ⅳ exhibited a sensitive second order derivative polarographic wave at -0 50 V( vs . SCE). This provides the basis for a sensitive and selective catalytic kinetic method for oxalate determination with second order derivative oscillopolarography. The effects of sulphuric acid, K 2Cr 2O 7, and orange Ⅳ concentrations, reaction temperature and reaction time were investigated. A calibration curve of oxalate in the range of 0 1-2 0 μg/mL was obtained by the fixed time procedure. The detection limit was 0 03 μg/ mL. The possible interference from co existing substances or ions was examined. The new method has a high sensitivity and a good selectivity compared to other existing methods for oxalic acid determination. It has been applied to the determination of micro amounts of oxalate in real urine samples with satisfactory results.
基金supported by the Doctoral Program of Xi'an Shiyou University(134010155)Shaanxi Provincial College Students'Inno vative Entrepreneurial Training Program(No.2016107051360 and 201610705046)
文摘A series of CeO2-Co3O4 mixed oxide catalysts with different Co/(Co+Ce) atomic ratios were synthesized by citric acid sol-gel method and used for catalytic oxidation of formaldehyde(HCHO). Many techniques such as Brumauer-Emmett-Teller(BET), X-ray diffraction(XRD), scanning electron microscopy(FE-SEM), temperature programmed reduction(H_2-TPR), temperature-programmed desorption(O_2-TPD) and X-ray photoelectron spectroscopy(XPS) were used to characterize catalysts. The results of catalytic performance tests showed that the catalyst CeO_2-Co_3O_4 with Co/(Co+Ce) ratio of 0.95 exhibited the best performance, and the temperature of complete oxidation of HCHO was 80 oC. The analytical results indicated that the addition of CeO_2 enhanced the specific surface area of Co_3O_4 and the fine dispersion of both of them. Moreover, the strong interaction between CeO_2 and Co_3O_4 resulted in the unique redox properties, which enhanced the available surface active oxygen and led to high valence state of cobalt oxide species. All those effects played crucial roles in the excellent performance of CeO_2-Co_3O_4 for the HCHO oxidation.
基金financially supported by the National Natural Science Foundation of China (No. 51364024 and 51404124)Gansu Province Department of Education Fund (No. 2013A-029)the Foundation of State Key Laboratory of Gansu Advanced Nonferrous Metal Materials (Nos. SKL 1316 and SKL 1314)
文摘Ti/SnO2–Sb electrode has a good effect on the removal of organic pollutants. But its short service life limits its large-scale application in industry. Electro-catalytic degradation performances and service life of the electrode can be significantly improved by doping rare earth(RE) ions into the oxide coating of Ti/SnO2–Sb electrode. Ti/SnO2–Sb electrodes doped with different RE elements(Ce, Dy, La, and Eu) were prepared by the thermal decomposition method at 550 ℃. Electro-catalytic degradation performances of electrodes doped with different RE elements were evaluated by linear sweep voltammetry(LSV) and Tafel curves. During the electrolysis,the conversion of p-nitrophenol was performed with these electrodes as anodes under galvanostatic control. The structures and morphologies of the surface coating of the electrodes were characterized by scanning electron microscope(SEM). The results demonstrate that the electro-catalytic degradation performances of Ti/SnO2–Sb electrodes are improved to different levels by doping different RE ions. Improved Ti/SnO2–Sb electrodes by the introduction of different RE have higher oxygen evolution potential, better electro-catalysis ability, better coverage,and longer electrode life.
基金United Arab Emirates University through NRF grant, 2011
文摘High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compounds. The composites retained high surface areas and pore volumes comparable with those of undoped γ-Al2O3 and the presence of the transition metal ions enhanced their surface acidic properties. The catalytic activity of the prepared catalysts in the oxidation of 1,2-dichloroethane (DCE) was studied in the temperature range of 250-400℃. The catalytic activity and product selectivity were strongly dependent on the presence and the type of dopant ion. While Cu^2+- and Cr^3+-containing catalysts showed 100% conversion at 300℃ and 350℃, V3+-containing catalyst showed considerably lower conversion. Furthermore, while the major products of the reactions over γ-alumina were vinyl chloride (C2H3Cl) and hydrogen chloride (HCl) at all temperatures, Cu- and Cr-doped catalysts showed siguiticantly stronger capability for deep oxidation to CO2.