Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and was...Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and wastewaters,and its high content jeopardizes the efficacy of Advanced oxidation process(AOPs).Thus,a novel chlorine ion resistant catalyst Bsite Ru doped LaFe_(1-x)Ru_(x)O_(3-)δin CWAO treatment of chlorine ion wastewater was examined.Especially,LaFe_(0.85)Ru_(0.15)O_(3-δ)was 45.5% better than that of the 6%RuO_(2)@TiO_(2)(commercial carrier)on total organic carbon(TOC)removal.Also,doped catalysts LaFe_(1-x)Ru_(x)O_(3-)δshowed better activity than supported catalysts RuO_(2)@LaFeO_(3) and RuO_(2)@TiO_(2) with the same Ru content.Moreover,LaFe_(0.85)Ru_(0.15)O_(3-)δhas novel chlorine ion resistance no matter the concentration of Cl^(−) and no Ru dissolves after the reaction.X-ray diffraction(XRD)refinement,X-ray photoelectron spectroscopy(XPS),transmission electron microscope(TEM),and X-ray absorption fine structure(XAFS)measurements verified the structure of LaFe_(0.85)Ru_(0.15)O_(3-)δ.Kinetic data and density functional theory(DFT)proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions.The existence of Fe in LaFe_(0.85)Ru_(0.15)O_(3-)δcould adsorb chlorine ion(catalytic activity inhibitor),which can protect the Ru site and other active oxygen species to exert catalytic activity.This work is essential for the development of chloride-resistant catalyst in CWAO.展开更多
Copper oxides were prepared by direct heating and decomposing copper(Ⅱ) salts, such as Cu 2(OH) 2CO 3, Cu(NO 3) 2·3H 2O, Cu 2C 6H 4O 7·2 5H 2O, CuC 2O 4·2H 2O and CuAc 2·H 2O. The phase, surface a...Copper oxides were prepared by direct heating and decomposing copper(Ⅱ) salts, such as Cu 2(OH) 2CO 3, Cu(NO 3) 2·3H 2O, Cu 2C 6H 4O 7·2 5H 2O, CuC 2O 4·2H 2O and CuAc 2·H 2O. The phase, surface area and catalytic activity of the oxides for H 2O 2 decomposition were investigated by means of XRD and BET measurements. It has been demonstrated that the characteristics of copper oxides obtained from different precursors are much different from each other. Monocomponent nano CuO, which has higher catalytic activity for H 2O 2 decomposition, can be prepared by direct heating and decomposing Cu 2(OH) 2CO 3. On the other hand, CuO in the decomposition products of the organic acid copper can be partially reduced to Cu 2O and Cu in the reducing atmosphere, and the Cu 2O component in the products has higher catalytic activity for H 2O 2 decomposition.展开更多
基金supported by the Natural Science Foundation of Liaoning Province (No. 2020-BS-012)the National Natural Science Foundation of China (No. 51878643)+2 种基金the Dalian Institute of Chemical Physics & Qingdao Institute of Bioenergy and Bioprocess Technology (DICP&QIBEBT) (No. UN201809)the Scientific Research Common Program of Beijing Municipal Commission of Education (No. KM202010017006)Talents Project of Beijing Organization Department (No. 2018000020124G091)。
文摘Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and wastewaters,and its high content jeopardizes the efficacy of Advanced oxidation process(AOPs).Thus,a novel chlorine ion resistant catalyst Bsite Ru doped LaFe_(1-x)Ru_(x)O_(3-)δin CWAO treatment of chlorine ion wastewater was examined.Especially,LaFe_(0.85)Ru_(0.15)O_(3-δ)was 45.5% better than that of the 6%RuO_(2)@TiO_(2)(commercial carrier)on total organic carbon(TOC)removal.Also,doped catalysts LaFe_(1-x)Ru_(x)O_(3-)δshowed better activity than supported catalysts RuO_(2)@LaFeO_(3) and RuO_(2)@TiO_(2) with the same Ru content.Moreover,LaFe_(0.85)Ru_(0.15)O_(3-)δhas novel chlorine ion resistance no matter the concentration of Cl^(−) and no Ru dissolves after the reaction.X-ray diffraction(XRD)refinement,X-ray photoelectron spectroscopy(XPS),transmission electron microscope(TEM),and X-ray absorption fine structure(XAFS)measurements verified the structure of LaFe_(0.85)Ru_(0.15)O_(3-)δ.Kinetic data and density functional theory(DFT)proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions.The existence of Fe in LaFe_(0.85)Ru_(0.15)O_(3-)δcould adsorb chlorine ion(catalytic activity inhibitor),which can protect the Ru site and other active oxygen species to exert catalytic activity.This work is essential for the development of chloride-resistant catalyst in CWAO.
文摘Copper oxides were prepared by direct heating and decomposing copper(Ⅱ) salts, such as Cu 2(OH) 2CO 3, Cu(NO 3) 2·3H 2O, Cu 2C 6H 4O 7·2 5H 2O, CuC 2O 4·2H 2O and CuAc 2·H 2O. The phase, surface area and catalytic activity of the oxides for H 2O 2 decomposition were investigated by means of XRD and BET measurements. It has been demonstrated that the characteristics of copper oxides obtained from different precursors are much different from each other. Monocomponent nano CuO, which has higher catalytic activity for H 2O 2 decomposition, can be prepared by direct heating and decomposing Cu 2(OH) 2CO 3. On the other hand, CuO in the decomposition products of the organic acid copper can be partially reduced to Cu 2O and Cu in the reducing atmosphere, and the Cu 2O component in the products has higher catalytic activity for H 2O 2 decomposition.