期刊文献+
共找到1,809篇文章
< 1 2 91 >
每页显示 20 50 100
Influence of Pretreatment on the Interaction of Oxygen with Silver and the Catalytic Activity of Ag/SiO_(2) Catalysts for CO Selective Oxidation in H_(2) 被引量:1
1
作者 ZhenpingQu MojieCheng +1 位作者 ChuanShi XinheBao 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第1期4-12,共9页
The interactions of oxygen with pre-reduced silver catalysts as well as theircatalytic properties for CO selective oxidation in H_2 after oxygen pre-treatment are studied inthis paper. It is found that the pretreatmen... The interactions of oxygen with pre-reduced silver catalysts as well as theircatalytic properties for CO selective oxidation in H_2 after oxygen pre-treatment are studied inthis paper. It is found that the pretreatment exerts a strong influence on the activity andselectivity of the silver catalyst. A drop in activity and selectivity is observed after treating apre-reduced catalyst with oxygen at low temperatures, whereas a converse result is obtained after anoxidizing treatment at high temperatures (T ≥ 350℃). O_2-TPD results show that surface oxygenspecies adsorbs on silver surface after the oxygen treatment at low temperatures. However,penetration of oxygen into the silver is enhanced by a high temperature treatment, meanwhile thesurface oxygen species disappear. No other silver species except metallic silver are observed on allthe catalysts by XRD, and the size of silver particle is not changed after the treatment withoxygen at low temperatures. The surface oxygen species formed by oxygen treatment can also beremoved by hydrogen reduction. The strongly-adsorbed surface oxygen species prohibit the adsorptionand diffusion of oxygen species in reaction gas on the surface of silver catalyst, causing thedecrease in CO oxidation activity, in other words, it is important to obtain a clean silver surfacefor increasing the catalyst activity in CO removal from H_2-rich feed gas. The differences inactivity and selectivity due to the oxygen pretreatment at different temperatures are discussed interms of the changes in the surface/subsurface oxygen species of the silver particles. 展开更多
关键词 CO selective oxidation PRETREATMENT silver catalyst OXYGEN interaction
下载PDF
Catalytic Oxidation of Toluene over Nanorod Manganese Oxides Catalysts: Phase Change Effects
2
作者 Zhang Xuejun Zhang Zhuofu +5 位作者 Song Zhongxian Wu Yinghan Liu Wei Liu Zepeng Liu Chunyu Zhu Xinfeng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第3期67-76,共10页
Four manganese oxide (MnO_(x)) catalysts with different phases were prepared via a hydrothermal method, and the toluene oxidation over the four manganese dioxide (MnO_(x)) catalysts was studied. Among the catalysts, ... Four manganese oxide (MnO_(x)) catalysts with different phases were prepared via a hydrothermal method, and the toluene oxidation over the four manganese dioxide (MnO_(x)) catalysts was studied. Among the catalysts, δ-MnO_(2) exhibits the best performance, excellent stability, and reusability. Moreover, δ-MnO_(2) possesses the highest specific surface area, with more exposed active sites compared to the other catalysts with which to make contact with toluene, leading to it exhibiting excellent activity. Furthermore, δ-MnO_(2) shows more lattice defects, Mn^(3+)/(Mn^(3+) + Mn^(4+)), oxygen vacancies, and surface adsorbed oxygen than the other catalysts, resulting in its excellent redox properties and catalytic performance. In addition, oxygen molecules adsorb on the oxygen vacancies of δ-MnO_(2), which are beneficial to the adsorption and oxidation of toluene, with benzyl alcohol, benzaldehyde, benzoic acid, and benzoic acid ester detected as specific intermediate products. 展开更多
关键词 catalytic oxidation MnOx catalysts Lattice defects Mn^(3+)/(Mn^(3+)+Mn^(4+))
下载PDF
Selective catalytic oxidation of NO with O_2 over Ce-doped MnO_x/TiO_2 catalysts 被引量:26
3
作者 Xiaohai Li Shule Zhang +2 位作者 Yong Jia Xiaoxiao Liu Qin Zhong 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第1期17-24,共8页
A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined ... A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated. 展开更多
关键词 selective catalytic oxidation (SCO) of NO MnOx/TiO2 catalysts Ce-doped catalysts
下载PDF
Experimental Research on Mercury Catalytic Oxidation over Ce Modified SCR Catalyst
4
作者 Yadi Qin Qiyu Weng Yuqun Zhuo 《Energy Engineering》 EI 2022年第1期35-47,共13页
In order to improve the ability of SCR catalyst to catalyze the oxidation of gaseous elemental mercury,a series of novel Ce modified SCR(Selection Catalytic Reduction,V_(2)O_(5)-WO_(3)/TiO_(2))catalysts were prepared ... In order to improve the ability of SCR catalyst to catalyze the oxidation of gaseous elemental mercury,a series of novel Ce modified SCR(Selection Catalytic Reduction,V_(2)O_(5)-WO_(3)/TiO_(2))catalysts were prepared via two-step ultrasonic impregnation method.The performance of Ce/SCR catalysts on Hg^(0)oxidation and NO reduction as well as the catalytic mechanism on Hg^(0)oxidation was also studied.The XRD,BET measurements and XPS were used to characterize the catalysts.The results showed that the pore volume and pore size of catalyst was reduced by Ce doping,and the specific surface area decreased with the increase of Ce content in catalyst.The performance on Hg^(0)oxidation was promoted by the introduction of CeO_(2).Ce_(1)/SCR(1%Ce,wt.%)catalyst exhibited the best Hg^(0)oxidation activity of 21.2%higher than that of SCR catalyst at 350℃,of which the NO conversion efficiency was also higher at 200-400℃.Furthermore,Ce_(1)/SCR showed a better H_(2)O resistance but a slightly weaker SO_(2)resistance than SCR catalyst.The chemisorbed oxygen and weak absorbed oxygen on the surface of catalyst were increased by the addition of CeO_(2).The chemisorbed oxygen and weak absorbed oxygen on the surface of catalyst were increased by the addition of CeO_(2).The Ce_(1)/SCR possed better redox ability compared with SCR catalyst.HCl was the most effective gas responsible for the Hg^(0)oxidation,and the redox cycle(V^(4+)+Ce^(4+)←→V^(5+)+Ce^(3+))played an important role in promoting Hg^(0)oxidation. 展开更多
关键词 Mercury catalytic oxidation SCR catalyst Ce doping reaction mechanism
下载PDF
Pt/FeSnO(OH)_5: A Novel Supported Pt Catalyst for Catalytic Oxidation of Benzene
5
作者 俞瀚 曹周明 +1 位作者 魏笑峰 于岩 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第6期889-902,共14页
Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of... Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of the catalysts by XRD, SEM, TEM, EDS, XPS, BET, TGA and DTA, we found most Pt could be reduced to metallic state when the hydroxyl catalyst was used as supporter, and the metallic Pt in Pt/Fe Sn O(OH)5 was more active than the oxidized Pt in Pt/γ-Al_2O_3 in catalytic oxidation of VOCs. Pt/FeSnO(OH)_5 shows both good catalytic activity and high stability, which may be a promising catalyst. This study may also be helpful for the design and fabrication of new catalysts. 展开更多
关键词 FeSnO(OH)5 supported Pt catalyst catalytic oxidation of benzene
下载PDF
Catalytic Oxidation of Cyclohexene to Adipic Acid with a Reaction-Controlled Phase-Transfer Catalyst 被引量:13
6
作者 GUO Minglin (College of Materials and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, China) 《催化学报》 SCIE CAS CSCD 北大核心 2003年第7期483-484,共2页
关键词 催化氧化反应 环己烯 脂肪酸 反应控制 相转移催化剂 癸钨酸盐 十二钨磷酸盐 有机合成
下载PDF
Preparation of nitric humic acid by catalytic oxidation from Guizhou coal with catalysts 被引量:9
7
作者 Yang Zhiyuan Gong Liang Ran Pan 《International Journal of Mining Science and Technology》 2012年第1期75-78,共4页
Nitric humic acid was prepared by catalytic oxidation between nitric acid and Guizhou coal, with added catalysts. We investigated catalytic oxidation processes and the factors that affect the reactions. The effects of... Nitric humic acid was prepared by catalytic oxidation between nitric acid and Guizhou coal, with added catalysts. We investigated catalytic oxidation processes and the factors that affect the reactions. The effects of different catalysts, including NiSO 4 support on active carbon (AC-NiSO 4 ), NiSO 4 support on silicon dioxide (SiO 2 -NiSO 4 ), composites of SO 4 2à /Fe 2 O 3 , Zr-iron and vanadium-iron composite were studied. As well, we investigated nitric humic acid yields and the chemical structure of products by element analysis, FT-IR and E4/E6 (an absorbance ratio at wavelengths of 465 and 665 nm of humic acid alkaline extraction solutions). The results show that the catalytic oxidation reaction with added catalysts can increase humic acid yields by 18.7%, 16.36%, 12.94%, 5.61% and 8.59%, respectively. The highest yield of humic acid, i.e., 36.0%, was obtained with AC-NiSO 4 as the catalyst. The amounts of C and H decreased with the amount of nitrogen. The increase in the E4/E6 ratio in catalytic oxidation of (Guizhou) coal shows that small molecular weights and high yields of nitric humic acid can be obtained by catalytic oxidation reactions. 展开更多
关键词 催化氧化反应 催化剂制备 腐植酸 贵州煤 硝酸 E4/E6值 复合材料 吸光度比值
下载PDF
Advances in selective catalytic oxidation of ammonia (NH_(3)-SCO): A review of catalyst structure-activity relationship and design principles
8
作者 Zhao Li Chunxue Wang +6 位作者 Junjun Qiu Yixing Ma Chi Wang Xin Sun Kai Li Ping Ning Fei Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期169-180,共12页
NH_(3) in ambient air directly leads to an increase in the aerosol content in the air. These substances lead to the formation of haze to various environmental problems after atmospheric circulation and diffusion. Cont... NH_(3) in ambient air directly leads to an increase in the aerosol content in the air. These substances lead to the formation of haze to various environmental problems after atmospheric circulation and diffusion. Controlling NH_(3) emissions caused by ammonia escaping from mobile and industrial sources can effectively reduce the NH_(3) content in ambient air. Among the various NH_(3) removal methods, the selective catalytic oxygen method (NH_(3)-SCO) is committed to oxidizing NH_(3) to environmentally harmless H_(2)O and N_(2);therefore, it is the most valuable and ideal ammonia removal method. In this review, the characteristics of loaded and core-shell catalysts in NH_(3)-SCO have been reviewed in the context of catalyst structure-activity relationships, and the H_(2)O resistance and SO2 resistance of the catalysts are discussed in the context of practical application conditions. Then the effects of the valence state of the active center, oxygen species on the catalyst surface, dispersion of the active center and acidic sites on the catalyst performance are discussed comprehensively. Finally, the shortcomings of the existing catalysts are summarized and the catalyst development is discussed based on the existing studies. 展开更多
关键词 AMMONIA Selective catalytic oxidation Active metals and supports Influence of gas composition Reaction mechanism catalyst structure-activity relationship
原文传递
Zn-Ni double metal cyanide complex: A novel effective catalyst for copolymerization of propylene oxide and carbon dioxide
9
作者 陈上 麻明友 +3 位作者 肖卓炳 刘建本 张兴宏 戚国荣 《中国有色金属学会会刊:英文版》 CSCD 2006年第A02期293-298,共6页
关键词 Zn-Ni双金属氰化物配合物 环氧丙烷 二氧化碳 共聚合 催化剂
下载PDF
Catalytic Oxidation of U^4+ to U^6+ by Oxygen in the Presence of a Catalyst "Muhamedzhan-1"
10
作者 Aibassov Erkin Zhakenovich Baiguzhin Adil Alimbayevich Umirkulova Zhanar Sempekovna Serikbaeva Gulbarshyn Kuanyshkanovna 《Journal of Chemistry and Chemical Engineering》 2013年第1期81-83,共3页
关键词 催化氧化 催化剂 地浸采铀 过氧化氢 氧化剂
下载PDF
Study on Chemisorption, Catalytic Behavior, and Stability of Supported Au Catalyst for the Propylene Epoxidation Reaction
11
作者 Feifei Sun Shunhe Zhong 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第1期45-51,共7页
The supported Au/TiO2 and Au/TiO2-SiO2 catalysts were prepared by deposition precipitation method. The TPD study reveals that propylene oxide competes with propylene to be adsorbed on the same adsorptive center-Ti^n+... The supported Au/TiO2 and Au/TiO2-SiO2 catalysts were prepared by deposition precipitation method. The TPD study reveals that propylene oxide competes with propylene to be adsorbed on the same adsorptive center-Ti^n+ site on the surface of the catalyst and that the adisorbing capacity of the catalyst for propylene oxide is larger than that for propylene. Catalytic behavior for propylene epoxidation with H2 and O2 was tested in a micro-reactor. Under typical conditions, the selectivity for propylene oxide is over 87%. The TG curves show that PO successive oxidation cause carbon deposition on the active center and deactivation of the Au catalysts. Because the amounts of Tin+ site decrease significantly, and consequently the separation between Ti^n+ sites increases, the Au/TiO2-SiO2 catalyst is more stable than Au/TiO2. 展开更多
关键词 AU/TIO2 Au/TiO2-SiO2 propylene propylene oxide EPoxidation catalyst stability
下载PDF
A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater
12
作者 Bingxiao Feng Lining Hao +6 位作者 Chaoting Deng Jiaqiang Wang Hongbing Song Meng Xiao Tingting Huang Quanhong Zhu Hengjun Gai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期338-348,共11页
Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing... Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater. 展开更多
关键词 Hydrothermal stability Ultra-dispersed copper-based catalyst catalytic wet air oxidation M-CRESOL Biological toxicity
下载PDF
Kinetics study on catalytic wet air oxidation of phenol by several metal oxide catalysts 被引量:1
13
作者 WANJia-feng FENGYu-jie +2 位作者 CAIWei-min YANGShao-xia SUNXiao-jun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第4期556-558,共3页
Four metal oxide catalysts composed of copper(Cu), stannum(Sn), copper-stannum(Cu-Sn) and copper-cerium(Cu-Ce) respectively were prepared by the co-impregnation method, and γ-alumina(γ-Al 2O 3) is selected as supp... Four metal oxide catalysts composed of copper(Cu), stannum(Sn), copper-stannum(Cu-Sn) and copper-cerium(Cu-Ce) respectively were prepared by the co-impregnation method, and γ-alumina(γ-Al 2O 3) is selected as support. A first-order kinetics model was established to study the catalytic wet air oxidation of phenol at different temperature when these catalysts were used. The model simulations are good agreement with present experimental data. Results showed that the reaction rate constants can be significantly increased when catalysts were used, and the catalyst of 6% Cu—10%Ce/γ-Al 2O 3 showed the best catalytic activity. This is consistent with the result of catalytic wet air oxidation of phenol and the COD removal can be arrived at 98.2% at temperature 210℃, oxygen partial pressure 3 MPa and reaction time 30 min. The activation energies of each reaction with different catalysts are nearly equal, which is found to be about 42 kJ/mol and the reaction in this study is proved to be kinetics control. 展开更多
关键词 catalytic wet air oxidation catalyst PHENOL
下载PDF
The high catalytic activity and strong stability of 3%Fe/AC catalysts for catalytic wet peroxide oxidation of m-cresol: The role of surface functional groups and FeO_(x) particles 被引量:1
14
作者 Peiwei Han Chunhua Xu +5 位作者 Yamin Wang Chenglin Sun Huangzhao Wei Haibo Jin Ying Zhao Lei Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期105-114,共10页
FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on th... FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on the mechanism of Fe/AC catalysis in CWPO, the specific contribution of each component(surface oxygen groups and FeOxon AC) inside an Fe/AC catalyst and their corresponding reaction mechanism remain unclear, and the reaction stability of CWPO catalysts has rarely been discussed. Then the optimal CWPO catalyst in our laboratory, 3%Fe/AC, was selected.(1) By removing certain components on the AC through heat treatment, its contribution to the reaction and the corresponding reaction mechanism were investigated. With the aid of temperature-programmed desorption–mass spectrometry(TPD–MS) and the CWPO reaction, the normalized catalytic contributions of components were shown to be: 37.3%(carboxylic groups), 5.3%(anhydride), 19.3%(ether/hydroxyl),-71.4%(carbonyl groups) and 100%(FeOx),respectively. DFT calculation and EPR analysis confirmed that carboxylic groups and Fe_(2)O_(3) are able to activate the H_(2)O_(2) to generate·OH.(2) The catalysts at were characterized at different reaction times(0 h, 450 h, 900 h, 1350 h, and 1800 h) by TPD–MS and M?ssbauer spectroscopy. Results suggested that the number of carboxylic goups gradually increased and the size of paramagnetic Fe_(2)O_(3) particle crystallites gradually increased as the reactions progressed. The occurrence of strong interactions between metal oxides and AC was also confirmed. Due to these effects, the strong stability of 3%Fe/AC was further improved. Therefore, the reasons for the high activity and strong stability of 3%Fe/AC in CWPO were clearly shown. We believe that this work provides an idea of the removal of cresols from wastewater into the introduction to show the potential applications of CWPO. 展开更多
关键词 catalytic wet peroxide oxidation Fe/AC catalyst Surface functional groups Reaction mechanism
下载PDF
Influence of the structure of TiO_2 , CeO_2 , and CeO_2-TiO_2 supports on the activity of Ru catalysts in the catalytic wet air oxidation of acetic acid 被引量:7
15
作者 YANG Shaoxia ZHU Wanpeng WANG Xingang 《Rare Metals》 SCIE EI CAS CSCD 2011年第5期488-495,共8页
Ru catalysts, supported on TiO 2 , CeO 2 , and CeO 2 -TiO 2 , were prepared by the impregnation method. The effect of the structure of the supports on the activity of Ru catalysts was investigated in the catalytic wet... Ru catalysts, supported on TiO 2 , CeO 2 , and CeO 2 -TiO 2 , were prepared by the impregnation method. The effect of the structure of the supports on the activity of Ru catalysts was investigated in the catalytic wet air oxidation (CWAO) of acetic acid under 230℃ and 5 MPa in a batch reactor. Physical properties including the surface area, crystalline phase, and surface components of the Ru catalysts were characterized by N 2 adsorption, X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The CeO 2 -based Ru catalysts had good activity, and the prepared RuO 2 /CeO 2 catalyst showed markedly higher activity than the RuO 2 /CeO 2 -TiO 2 catalyst. The surface structure, the high amount of chemisorbed oxygen on the catalyst surface, and the suitable pH pzc value of the supports played an important role in the activity of the Ru catalysts in CWAO of acetic acid. 展开更多
关键词 catalytic oxidation catalysts RUTHENIUM CERIA acetic acid
下载PDF
Preparation of Au/CeO_2 catalyst and its catalytic performance for HCHO oxidation 被引量:4
16
作者 贾美林 白海锋 +2 位作者 照日格图 沈岳年 李彦锋 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第4期528-531,共4页
Aqueous precipitation and deposition-precipitation method were used to prepare CeO2 supports and Au/CeO2 catalysts, respectively. The effect of preparation condition of support on the catalyst activity was investigate... Aqueous precipitation and deposition-precipitation method were used to prepare CeO2 supports and Au/CeO2 catalysts, respectively. The effect of preparation condition of support on the catalyst activity was investigated. The catalytic combustion of HCHO was considered as the probe reaction for comparing the catalyst activity. The BET, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and reduction (TPR) were carried out to analyze the influence factor on the catalysts activity. The results showed that the addition of dispersant and use of microwave in the support preparation procedure could be beneficial for enhancing the interaction of supports and gold species and thus improved the catalytic activity. The total conversion temperature for HCHO was 146 ℃ over AC400. With the modification during supports preparation process, the catalytic activity increased with total conversion temperature decreasing to 98 ℃. The results of XPS indicated that Au^0 and Au^+1 species coexisted in these catalysts and the activity of catalyst correlated with Au^+1/Au^0 ratio. Temperature-programmed reduction results demonstrated that the reduction peak appeared between 100-170 ℃ with the inducing of gold. The dependence of activity on the reduction peak temperature implied that ionic gold was catalytic activity component for HCHO oxidation. 展开更多
关键词 gold catalyst deposition precipitation CEO2 catalytic oxidation of HCHO rare earths
下载PDF
Preparation of Cerium Doped Cu/MIL-53(A1) Catalyst and Its Catalytic Activity in CO Oxidation Reaction 被引量:1
17
作者 谭海燕 ZHOU Yin +5 位作者 YAN Yunfan 胡卫兵 SHI Xinyu TAN Zhidou TIAN Li ZHENG Yin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期23-28,共6页
Metal-organic framework(MOF) material MIL-53(A1) with high thermal stability was prepared by a solvothermal method,serving as a support material of cerium doped copper catalyst(Ce-Cu)/MIL-53(A1) material for C... Metal-organic framework(MOF) material MIL-53(A1) with high thermal stability was prepared by a solvothermal method,serving as a support material of cerium doped copper catalyst(Ce-Cu)/MIL-53(A1) material for CO oxidation with high catalytic activity.The catalytic performance between the(CuCe)/MIL-53(A1) and the Cu/MIL-53(A1) catalytic material was compared to understand the catalytic behavior of the catalysts.The catalysts were characterized by thermogravimetric-differential scanning calorimetry(TGDSC),N2 adsorption- desorption,X-ray diffraction(XRD),and transmission electron microscopy(TEM).The characterization results showed that MIL-53(A1) had good stability and high surface areas,the(Ce-Cu)nanoparticles on the MIL-53(A1) support was uniform.Therefore,the heterogeneous catalytic composite materials(Ce-Cu)/MIL-53(A1) catalyst exhibited much higher activity than that of the Cu/MIL- 53(A1) catalyst in CO oxidation test,with 100%conversion at 80 ℃.The results reveal that(Cu-Ce)/MIL-53(A1) is the suitable candidate for achieving low temperature and higher activity CO oxidation catalyst of MOFs. 展开更多
关键词 metal-organic framework solvothermal synthesis MIL-53(Al) cerium doped copper catalyst CO catalytic oxidation
下载PDF
Structural regulation of single-atom catalysts for enhanced catalytic oxidation performance of volatile organic compounds 被引量:1
18
作者 Fei Jiang Zhiyuan Zhou +6 位作者 Chao Zhang Chao Feng Gaoyan Xiong Yunxia Wang Zhaoyang Fei Yunqi Liu Yuan Pan 《Nano Research》 SCIE EI CSCD 2023年第2期1967-1983,共17页
The catalytic oxidation of volatile organic compounds(VOCs)is considered a feasible method for VOCs treatment by virtue of its low technical cost,high economic efficiency,and low additionally produced pollutants,which... The catalytic oxidation of volatile organic compounds(VOCs)is considered a feasible method for VOCs treatment by virtue of its low technical cost,high economic efficiency,and low additionally produced pollutants,which is of important social value.Singleatom catalysts(SACs)with 100%atom utilization and uniform active sites usually have high activity and high product selectivity,and promise a broad range of applications.Precise regulation of the microstructures of SACs by means of defect engineering,interface engineering,and electronic effects can further improve the catalytic performance of VOCs oxidation.In this review,we introduce the mechanisms of VOCs oxidation,and systematically summarize the recent research progress of SACs in catalytic VOCs total oxidation into CO_(2)and H_(2)O,and then discuss the effects of various structural regulation strategies on the catalytic performance.Finally,we summarize the current problems yet to be solved and challenges currently faced in this field,and propose future design and research ideas for SACs in catalytic oxidation of VOCs. 展开更多
关键词 single-atom catalysts structure regulation active site volatile organic compounds catalytic oxidation reaction
原文传递
Promotional catalytic activity and reaction mechanism of Ag-modified Ce_(0.6)Zr_(0.4)O_(2) catalyst for catalytic oxidation of ammonia
19
作者 Xiaolong Tang Yuanyuan Zhang +3 位作者 Yaru Lei Yuanyuan Liu Honghong Yi Fengyu Gao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第2期491-504,共14页
Ce1-xZrxO_(2) composite oxides(molar,x=0-1.0,interval of 0.2)were prepared by a cetyltrimethylammonium bromide-assisted precipitation method.The enhancement of silver-species modification and catalytic mechanism of ad... Ce1-xZrxO_(2) composite oxides(molar,x=0-1.0,interval of 0.2)were prepared by a cetyltrimethylammonium bromide-assisted precipitation method.The enhancement of silver-species modification and catalytic mechanism of adsorption-transformationdesorption process were investigated over the Ag-impregnated catalysts for lowtemperature selective catalytic oxidation of ammonia(NH_(3)-SCO).The optimal 5 wt.%Ag/Ce_(0.6)Zr_(0.4)O_(2) catalyst presented good NH_(3)-SCO performancewith>90% NH_(3) conversion at temperature(T)≥250°C and 89% N_(2) selectivity.Despite the irregular block shape and underdeveloped specific surface area(∼60m2/g),the naked and Ag-modified Ce_(0.6)Zr_(0.4)O_(2) solid solution still obtained highly dispersed distribution of surface elements analyzed by scanning electron microscope-energy dispersive spectrometer(SEM-EDS)(mapping),N_(2) adsorptiondesorption test and X-ray diffraction(XRD).H2 temperature programmed reduction(H2-TPR)and X-ray photoelectron spectroscopy(XPS)results indicated that Ag-modification enhanced the mobility and activation of oxygen-species leading to a promotion on CeO_(2) reducibility and synergistic Ag0/Ag+and Ce^(4+)/Ce^(3+)redox cycles.Besides,Ag+/Ag_(2)O clusters could facilitate the formation of surface oxygen vacancies that was beneficial to the adsorption and activation of ammonia.NH3-temperature programmed desorption(NH_(3)-TPD)showed more adsorption-desorption capacity to ammoniawere provided by physical,weakandmedium-strong acid sites.Diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments revealed the activation of ammonia might be the control step of NH3-SCO procedure,during which NH3 dehydrogenation derived from NHx-species and also internal selective catalytic reduction(i-SCR)reactions were proposed. 展开更多
关键词 Ag/Ce_(0.6)Zr_(0.4)O_(2)catalyst Synergistic interaction catalytic oxidation of ammonia NH3 dehydrogenation Internal selective catalytic reduction
原文传递
TiO_2-Supported Binary Metal Oxide Catalysts for Low-temperature Selective Catalytic Reduction of NO_x with NH_3 被引量:5
20
作者 WU Bi-jun LIU Xiao-qin +1 位作者 XIAO Ping WANG Shu-gang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第5期615-619,共5页
Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele... Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3. 展开更多
关键词 Selective catalytic reduction of NO with NH3 Low-temperature selective catalytic reduction Binary metal oxide catalyst FTIR NH3-TPD
下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部