Light olefins,particularly ethylene and propylene,are the most important building blocks for the petrochemical industry,and demand for their production has been increasing.The catalytic pyrolysis process(CPP)and the c...Light olefins,particularly ethylene and propylene,are the most important building blocks for the petrochemical industry,and demand for their production has been increasing.The catalytic pyrolysis process(CPP)and the corresponding catalyst,developed by SINOPEC Research Institute of Petroleum Processing Co.,Ltd.,are designed to maximize the light olefin yield from catalytic cracking of heavy feedstocks.However,owing to the continuing degradation of feedstocks,the original catalyst can no longer maintain its activity.Herein,we describe the rational design of the new catalyst,Epylene,from a new metal-modified hierarchical ZSM-5 zeolite and matrix.Epylene was tested in the CPP unit of Shaanxi Yanchang Coal Yulin Energy and Chemical Company.A test run and base run were conducted to demonstrate the better performance of Epylene compared with the original catalyst.The properties of the feedstocks and the operating conditions in both runs were similar.The light olefin yield was increased from 33.95%to 36.50%and the coke yield was only 9.58%in the test run,which was lower than that in the base run.展开更多
This article describes the application of technology for quenching catalytic pyrolysis gas at the Daqing commercial CPP test unit and the Shenyang commercial CPP production unit.On the basis of results for application...This article describes the application of technology for quenching catalytic pyrolysis gas at the Daqing commercial CPP test unit and the Shenyang commercial CPP production unit.On the basis of results for application of the Shenyang CPP unit this paper puts forward an improved process flow scheme for quenching the pyrolysis gas and made calculations using the process flowsheet software.Case Ⅰ of the process flow scheme,which is designed for full circulation of slurry,intends to use the pyrolysis light oil and fresh feed oil as the quenching media with the product slurry oil and fresh feedstock being discharged from the quench cooler bottom and routed directly to the reactor so that the fresh feed oil can be preheated prior to pyrolysis.Case Ⅱ of the process flow scheme intends to adopt recycle oil as the quenching medium with the product slurry and recycle oil being discharged from the quench cooler bottom to the fractionator,which then delivers the slurry from the bottom.These two cases for improving the process flow diagram can all effectively control the density and viscosity of the quenching medium to secure the smooth operation of quench cooler.展开更多
A new process named CPP (Catalytic Pyrolysis Process) for producing ethylene andpropylene from heavy oil feedstock has been developed. The catalyst CEP was specially designedfor this process, which has bi-functional c...A new process named CPP (Catalytic Pyrolysis Process) for producing ethylene andpropylene from heavy oil feedstock has been developed. The catalyst CEP was specially designedfor this process, which has bi-functional catalytic activities for both carbonium ion reaction andfree radical reaction, so as to maximize the yields of ethylene and propylene. The commercial trialshowed that the yield of ethylene and propylene was 20.37% and 18.23% respectively inmaximum ethylene operation with Daqing AR as feedstock, and the yield of ethylene and propylenewas 9.77% and 24.60% respectively in maximum propylene operation by using the same feedstock.Compared with steam cracker, the feed cost of CPP is much lower for producing ethylene andpropylene.展开更多
基金This research was financially supported by the National Key R&D Program of China(grant number 2022YFB3504000)the Contract Projects of China Petroleum&Chemical Corporation(SINOPEC Corp.)(grant number ST22005).
文摘Light olefins,particularly ethylene and propylene,are the most important building blocks for the petrochemical industry,and demand for their production has been increasing.The catalytic pyrolysis process(CPP)and the corresponding catalyst,developed by SINOPEC Research Institute of Petroleum Processing Co.,Ltd.,are designed to maximize the light olefin yield from catalytic cracking of heavy feedstocks.However,owing to the continuing degradation of feedstocks,the original catalyst can no longer maintain its activity.Herein,we describe the rational design of the new catalyst,Epylene,from a new metal-modified hierarchical ZSM-5 zeolite and matrix.Epylene was tested in the CPP unit of Shaanxi Yanchang Coal Yulin Energy and Chemical Company.A test run and base run were conducted to demonstrate the better performance of Epylene compared with the original catalyst.The properties of the feedstocks and the operating conditions in both runs were similar.The light olefin yield was increased from 33.95%to 36.50%and the coke yield was only 9.58%in the test run,which was lower than that in the base run.
文摘This article describes the application of technology for quenching catalytic pyrolysis gas at the Daqing commercial CPP test unit and the Shenyang commercial CPP production unit.On the basis of results for application of the Shenyang CPP unit this paper puts forward an improved process flow scheme for quenching the pyrolysis gas and made calculations using the process flowsheet software.Case Ⅰ of the process flow scheme,which is designed for full circulation of slurry,intends to use the pyrolysis light oil and fresh feed oil as the quenching media with the product slurry oil and fresh feedstock being discharged from the quench cooler bottom and routed directly to the reactor so that the fresh feed oil can be preheated prior to pyrolysis.Case Ⅱ of the process flow scheme intends to adopt recycle oil as the quenching medium with the product slurry and recycle oil being discharged from the quench cooler bottom to the fractionator,which then delivers the slurry from the bottom.These two cases for improving the process flow diagram can all effectively control the density and viscosity of the quenching medium to secure the smooth operation of quench cooler.
文摘A new process named CPP (Catalytic Pyrolysis Process) for producing ethylene andpropylene from heavy oil feedstock has been developed. The catalyst CEP was specially designedfor this process, which has bi-functional catalytic activities for both carbonium ion reaction andfree radical reaction, so as to maximize the yields of ethylene and propylene. The commercial trialshowed that the yield of ethylene and propylene was 20.37% and 18.23% respectively inmaximum ethylene operation with Daqing AR as feedstock, and the yield of ethylene and propylenewas 9.77% and 24.60% respectively in maximum propylene operation by using the same feedstock.Compared with steam cracker, the feed cost of CPP is much lower for producing ethylene andpropylene.