期刊文献+
共找到36,769篇文章
< 1 2 250 >
每页显示 20 50 100
P-induced electron transfer interaction for enhanced selective hydrogenation rearrangement of furfural to cyclopentanone
1
作者 Weichen Wang Hongke Zhang +4 位作者 Yidan Wang Fangyuan Zhou Zhiyu Xiang Wanbin Zhu Hongliang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期43-51,共9页
Optimizing the intrinsic activity of non-noble metal by precisely tailoring electronic structure offers an appealing way to construct cost-effective catalysts for selective biomass valorization.Herein,we reported a P-... Optimizing the intrinsic activity of non-noble metal by precisely tailoring electronic structure offers an appealing way to construct cost-effective catalysts for selective biomass valorization.Herein,we reported a P-doping bifunctional catalyst(Ni-P/mSiO_(2))that achieved 96.6%yield for the hydrogenation rearrangement of furfural to cyclopentanone at mild conditions(1 MPaH_(2),150°C).The turnover frequency of Ni-P/mSiO_(2)was 411.9 h^(-1),which was 3.2-fold than that of Ni/mSiO_(2)(127.2 h^(-1)).Detailed characterizations and differential charge density calculations revealed that the electron-deficient Niδ+species were generated by the electron transfer from Ni to P,which promoted the ring rearrangement reaction.Density functional theory calculations illustrated that the presence of P atoms endowed furfural tilted adsorb on the Ni surface by the C=O group and facilitated the desorption of cyclopentanone.This work unraveled the connection between the localized electronic structures and the catalytic properties,so as to provide a promising reference for designing advanced catalysts for biomass valorization. 展开更多
关键词 FURFURAL Hydrogenation rearrangement P-DOPING Electron transfer Biomass valorization
下载PDF
Critical approaches in the catalytic transformation of sugar isomerization and epimerization after Fischer-History,challenges,and prospects
2
作者 Da-Ming Gao Xun Zhang +5 位作者 Haichao Liu Hidemi Fujino Tingzhou Lei Fuan Sun Jie Zhu Taoli Huhe 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期435-453,共19页
The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and... The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date. 展开更多
关键词 Rare sugars ISOMERIZATION KETONIZATION EPIMERIZATION catalytic transformation
下载PDF
Green synthesis of ZSM-5 using silica fume and catalytic co-cracking of lignin and plastics for production of monocyclic aromatics
3
作者 Hongbing Fu Yufei Gu +7 位作者 Tianhua Gao Fuwei Li Hengshuo Gu Hucheng Ge Yuke Liu Zhixia Li Hongfei Lin Jiangfei Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期92-105,共14页
ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles w... ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles with a particle size about 2.0 μm and weak acid-dominated with proper Brønsted(B)and Lewis(L)acid sites.The ZSM-5 was used for catalytic co-cracking of n-octane and guaiacol,lowdensity polyethylene(LDPE)and alkali lignin(AL)to enhance the production of benzene,toluene,ethylbenzene and xylene(BTEX).The most significant synergistic effect occurred at n-octane/guaiacol at 1:1 and LDPE/AL at 1:3,under the condition,the achieved BTEX selectivity were 24%and 33%(mass)higher than the calculated values(weighted average).The highest BTEX selectivity reached 88.5%,which was 3.7%and 54.2%higher than those from individual cracking LDPE and AL.The synthesized ZSM-5 exhibited superior catalytic performance compared to the commercial ZSM-5,indicating potential application prospect. 展开更多
关键词 Silica fume ZSM-5 catalytic co-cracking PLASTICS LIGNIN
下载PDF
HZSM-5 zeolites undergoing the high-temperature process for boosting the bimolecular reaction in n-heptane catalytic cracking
4
作者 Chenggong Song Zhenzhou Ma +6 位作者 Xu Hou Hao Zhou Huimin Qiao Changchang Tian Li Yin Baitang Jin Enxian Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期136-144,共9页
High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,... High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking. 展开更多
关键词 HZSM-5 N-HEPTANE catalytic cracking High-temperature treatment Extra-framework Al
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction
5
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility Hydrogen evolution reaction
下载PDF
Catalytic Effect of Transition Metal Complexes of Triaminoguanidine on the Thermolysis of Energetic NC/DEGDN Composite
6
作者 Mohammed Dourari Ahmed Fouzi Tarchoun +4 位作者 Djalal Trache Amir Abdelaziz Roufaida Tiliouine Tessnim Barkat Weiqiang Pang 《火炸药学报》 EI CAS CSCD 北大核心 2024年第3期209-219,I0003,共12页
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ... The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants. 展开更多
关键词 triaminoguanidine transition metal complexes NITROCELLULOSE diethylene glycol dinitrate catalytic effect
下载PDF
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design
7
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts Water splitting Hydrogen production catalytic mechanism Synthesis technique Optimization design
下载PDF
Preparation of Modified UiO-66 Catalyst and Its Catalytic Performance for NH_(3)-SCR Denitration
8
作者 吴彦霞 梁海龙 +2 位作者 CHEN Yufeng HU Liming WANG Chunpeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期261-267,共7页
Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactiv... Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactivity of the samples was evaluated by the denitration activity evaluation system,and the UiO-66 and the regulator-modified UiO-66 were characterized by XRD,SEM,BET,FTIR,TG,NH_(3)-TPD,etc.,the effects of regulator types on the structure and properties of UiO-66 were investigated.The experimental results show that,after adding the modifier,the morphology of UiO-66 changes from irregular quadrilateral with serious agglomeration to particles with regular crystal shape and good dispersibility,and the crystal morphology of the catalyst is improved.In addition,after adding the modifier,UiO-66 has a larger specific surface area and stronger surface acidity,which optimizes the catalytic performance of UiO-66.The catalytic performance test results of NH_(3)-SCR show that the low-temperature activity of UiO-66 is poor,and it only shows a certain catalytic activity at higher temperatures.The catalytic activity of UiO-66 was significantly improved after adding the regulator.Among them,the UiO-66-HCl modified with hydrochloric acid had the best catalytic activity,and the denitration rate reached 70%when the denitration temperature was 380℃. 展开更多
关键词 UiO-66 catalyst catalytic denitration NH_(3)-SCR MODIFIED
下载PDF
Preparation of PrFe_(x)Co_(1-x)O_(3)/Mt catalyst and study on degradation of 2-hydroxybenzoic acid wastewater by catalytic wet peroxide oxidation
9
作者 Binxia Zhao Yijia Gao +3 位作者 Tiancheng Hun Xiaoxiao Fan Nan Shao Xiaoqian Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期286-297,共12页
In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnat... In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnation(D)method and solid-melting(G)method,respectively,with Pr(S)as the active component and Al-pillared montmorillonite as the carrier.The catalysts were applied to treat the 2-hydroxybenzoic acid(2-HA)-simulated wastewater by catalytic wet peroxide oxidation(CWPO)technique,and the chemical oxygen demand(COD)removal rate and the 2-HA degradation rate were used as indicators to evaluate the catalytic performance.The results of the experiment indicated that the solid-melting method was more conducive to preparing the catalyst when the Co/Fe molar ratio of 7:3 and the optimal structural properties of the catalysts were achieved.The influence of operating parameters,including reaction temperature,catalyst dosage,H_(2)O_(2)dosage,pH,and initial 2-HA concentration,were optimized for the degradation of 2-HA by CWPO.The results showed that 97.64%of 2-HA degradation and 75.23%of COD removal rate were achieved under more suitable experimental conditions.In addition,after the catalyst was used five times,the degradation rate of 2-HA could still reach 76.93%,which implied the high stability and reusability of the catalyst.The high catalytic activity of the catalyst was due to the doping of Co into PrFeO_(3),which could promote the generation of HO·,and the high stability could be attributed to the loading of Pr(S)onto Al-Mt,which reduced the leaching of reactive metals.The study of reaction mechanism and kinetics showed that the whole degradation process conformed to the pseudo-firstorder kinetic equation,and the Langmuir-Hinshelwood method was applied to demonstrate that catalysis was dominant in the degradation process. 展开更多
关键词 MONTMORILLONITE PEROVSKITE catalytic wet peroxide oxidation(CWPO) 2-Hydroxybenzoic acid
下载PDF
Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst
10
作者 Haining Fan Xuan-Wen Gao +3 位作者 Hailong Xu Yichun Ding Shi-Xue Dou Wen-Bin Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期305-326,I0008,共23页
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec... Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy. 展开更多
关键词 Energy storage and conversion Metal battery Sulfur battery Air battery catalytic effect Heterogeneous catalyst Homogeneous catalyst
下载PDF
Boosting the catalytic activity toward oxygen reduction via a heterostructure of porous iron oxide-decorated 2D NiO/NG nanosheets
11
作者 Kakali Maiti Matthew T.Curnan +2 位作者 Hyung Jun Kim Kyeounghak Kim Jeong Woo Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期669-681,I0016,共14页
As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,... As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,and straightforward surface functionalization.Therefore,they may replace Pt-based catalysts in oxygen reduction reaction(ORR)applications.Herein,a simple method is developed to design hierarchical nano-frame structures assembled via 2D NiO and N-doped graphene(NG)nanosheets.This procedure can yield nanostructures that satisfy the criteria correlated with improved electrocatalytic performance,such as large surface area,numerous undercoordinated atoms,and high defect densities.Further,porous NG nanosheet architectures,featuring NiO nanosheets densely coordinated with accessible holey Fe_(2)O_(3) moieties,can enhance mesoporosity and balance hydrophilicity.Such improvements can facilitate charge transport and expose formerly inaccessible reaction sites,maximizing active site density utilization.Density functional theory(DFT)calculations reveal favored O_(2) adsorption and dissociation on Fe_(2)O_(3) hybrid structures when supported by 2D NiO and NG nanomaterials,given 2D materials donated charge to Fe_(2)O_(3) active sites.Our systematic studies reveal that synergistic contributions are responsible for enriching the catalytic activity of Fe_(2)O_(3)@NiO/NG in alkaline media-encompassing internal voids and pores,unique hierarchical support structures,and concentrated N-dopant and bimetallic atomic interactions.Ultimately,this work expands the toolbox for designing and synthesizing highly efficient 2D/2D shelled functional nanomaterials with transition metals,endeavoring to benefit energy conversion and related ORR applications. 展开更多
关键词 N-doped graphene Holey Fe_(2)O_(3)nanocrystals NiO nanosheets High catalytic performance ORR
下载PDF
Target-induced Trivalent G-quadruplex/hemin DNAzyme for Colorimetric Detection of Hg^(2+) Based on an Exonuclease III Assisted Catalytic Hairpin Assembly
12
作者 Zhenghua LIU Zhonghai LI 《Agricultural Biotechnology》 2024年第1期51-57,共7页
Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly fo... Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly formation of a trivalent G-quadruplex/hemin DNAzyme for colorimetric detection of Hg^(2+).A hairpin DNA(Hr)was designed with thymine-Hg^(2+)-thymine pairs that catalyzed by Exo III is prompted to happen upon binding Hg^(2+).A released DNA fragment triggers the catalytic assembly of other three hairpins(H1,H2,and H3)to form many trivalent G-quadruplex/hemin DNA enzymes for signal output.The developed sensor shows a dynamic range from 2 pM to 2μM,with an impressively low detection limit of 0.32 pM for Hg^(2+)detection.Such a sensor also has good selectivity toward Hg^(2+)detection in the presence of other common metal ions.This strategy shows the great potential for visual detection with portable type. 展开更多
关键词 G-quadruplex/hemin DNAzyme Multivalence catalytic hairpin assembly Exonuclease III Signal amplification Colorimetric detection
下载PDF
New insights into ATR inhibition in muscle invasive bladder cancer:The role of apolipoprotein B mRNA editing catalytic subunit 3B
13
作者 HYUNHO KIM UIJU CHO +5 位作者 SOOK HEE HONG HYUNG SOON PARK IN-HO KIM HO JUNG AN BYOUNG YONG SHIM JIN HYOUNG KANG 《Oncology Research》 SCIE 2024年第6期1021-1030,共10页
Background:Apolipoprotein B mRNA editing catalytic polypeptide(APOBEC),an endogenous mutator,induces DNA damage and activates the ataxia telangiectasia and Rad3-related(ATR)-checkpoint kinase 1(Chk1)pathway.Although c... Background:Apolipoprotein B mRNA editing catalytic polypeptide(APOBEC),an endogenous mutator,induces DNA damage and activates the ataxia telangiectasia and Rad3-related(ATR)-checkpoint kinase 1(Chk1)pathway.Although cisplatin-based therapy is the mainstay for muscle-invasive bladder cancer(MIBC),it has a poor survival rate.Therefore,this study aimed to evaluate the efficacy of an ATR inhibitor combined with cisplatin in the treatment of APOBEC catalytic subunit 3B(APOBEC3B)expressing MIBC.Methods:Immunohistochemical staining was performed to analyze an association between APOBEC3B and ATR in patients with MIBC.The APOBEC3B expression in MIBC cell lines was assessed using real-time polymerase chain reaction and western blot analysis.Western blot analysis was performed to confirm differences in phosphorylated Chk1(pChk1)expression according to the APOBEC3B expression.Cell viability and apoptosis analyses were performed to examine the anti-tumor activity of ATR inhibitors combined with cisplatin.Results:There was a significant association between APOBEC3B and ATR expression in the tumor tissues obtained from patients with MIBC.Cells with higher APOBEC3B expression showed higher pChk1 expression than cells expressing low APOBEC3B levels.Combination treatment of ATR inhibitor and cisplatin inhibited cell growth in MIBC cells with a higher APOBEC3B expression.Compared to cisplatin single treatment,combination treatment induced more apoptotic cell death in the cells with higher APOBEC3B expression.Conclusion:Our study shows that APOBEC3B’s higher expression status can enhance the sensitivity of MIBC to cisplatin upon ATR inhibition.This result provides new insight into appropriate patient selection for the effective application of ATR inhibitors in MIBC. 展开更多
关键词 Apolipoprotein B mRNA editing catalytic polypeptide(APOBEC) Ataxia telangiectasia and Rad3-related(ATR) Bladder cancer DNA damage response DNA replication stress
下载PDF
Research Advances on Cyclohexane Catalytic Cracking
14
作者 Weijiang Li Jingxi Zhang 《Expert Review of Chinese Chemical》 2024年第1期21-26,共6页
This article elaborates on the research achievements of domestic and foreign researchers in exploring the conversion pathways and reaction mechanisms of cyclohexane catalytic cracking in recent years.It analyzes the e... This article elaborates on the research achievements of domestic and foreign researchers in exploring the conversion pathways and reaction mechanisms of cyclohexane catalytic cracking in recent years.It analyzes the effects of different catalysts and process conditions on the conversion laws of cyclohexane,summarizes the conversion pathways of cyclohexane,and discusses the chemical mechanisms of several main reactions of cyclohexane in catalytic cracking,such as cracking,isomerization,hydrogen transfer,dehydrogenation,and alkylation;Several advanced characterization methods and common research methods were listed,and prospects for future development in this field were proposed based on existing research. 展开更多
关键词 catalytic cracking catalyst CYCLOALKANES CYCLOHEXANE
下载PDF
Brnsted Acidic Ionic Liquids: Efficient and Recyclable Catalytic Systems for Beckmann Rearrangement 被引量:2
15
作者 WU Mao-cheng DUAN Hai-feng CAO Jun-gang LIANG Da-peng JIANG Feng GAO Han JIA Xu-dong LIN Ying-jie 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第6期973-976,共4页
Six Brnsted acidic ionic liquids(ILs) 1a―1f were synthesized and used as the dual solvent-catalyst systems for Beckmann rearrangement reactions. Among ILs 1a―1f, IL 1a exhibited the highest catalytic activity and ... Six Brnsted acidic ionic liquids(ILs) 1a―1f were synthesized and used as the dual solvent-catalyst systems for Beckmann rearrangement reactions. Among ILs 1a―1f, IL 1a exhibited the highest catalytic activity and successfully catalyzed the Beckmann rearrangement of ketoximes, and the corresponding amides were obtained in good to excellent yields(74%―92%). In addition, IL 1a could be recovered easily and reused at least three times without any loss of catalytic activity. 展开更多
关键词 Brnsted acidic ionic liquid Beckmann rearrangement OXIME
下载PDF
Catalytic conversion of lignocellulosic biomass into chemicals and fuels 被引量:8
16
作者 Weiping Deng Yunchao Feng +21 位作者 Jie Fu Haiwei Guo Yong Guo Buxing Han Zhicheng Jiang Lingzhao Kong Changzhi Li Haichao Liu Phuc T.T.Nguyen Puning Ren Feng Wang Shuai Wang Yanqin Wang Ye Wang Sie Shing Wong Kai Yan Ning Yan Xiaofei Yang Yuanbao Zhang Zhanrong Zhang Xianhai Zeng Hui Zhou 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期10-114,共105页
In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a pro... In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted. 展开更多
关键词 Lignocelullose BIOMASS catalytic conversion Biofuels Renewable chemicals
下载PDF
Emerging catalytic materials for practical lithium-sulfur batteries 被引量:2
17
作者 Fangyi Shi Lingling Zhai +4 位作者 Qingqing Liu Jingya Yu Shu Ping Lau Bao Yu Xia Zheng-Long Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期127-145,I0004,共20页
High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation condit... High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation conditions reveals a huge gap between the demands for practical batteries and those in the literature.Low sulfur loading,a high electrolyte/sulfur(E/S)ratio and excess anodes for lab-scale LSBs significantly offset their high-energy merit.To approach practical LSBs,high loading and lean electrolyte parameters are needed,which involve budding challenges of slow charge transfer,polysulfide precipitation and severe shuttle effects.To track these obstacles,the exploration of electrocatalysts to immobilize polysulfides and accelerate Li-S redox kinetics has been widely reported.Herein,this review aims to survey state-of-the-art catalytic materials for practical LSBs with emphasis on elucidating the correlation among catalyst design strategies,material structures and electrochemical performance.We also statistically evaluate the state-of-the-art catalyst-modified LSBs to identify the remaining discrepancy between the current advancements and the real-world requirements.In closing,we put forward our proposal for a catalytic material study to help realize practical LSBs. 展开更多
关键词 Lithium-sulfur battery catalytic materials High sulfur loading Lean electrolyte
下载PDF
Catalyst for Increasing Ethylene and Propylene Production and Its Industrial Application in a Catalytic Pyrolysis Unit 被引量:1
18
作者 Sha Yuchen Wang Peng +5 位作者 Ouyang Ying Zhu Genquan Lu Lijun Song Haitao Lin Wei Luo Yibin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期1-9,共9页
Light olefins,particularly ethylene and propylene,are the most important building blocks for the petrochemical industry,and demand for their production has been increasing.The catalytic pyrolysis process(CPP)and the c... Light olefins,particularly ethylene and propylene,are the most important building blocks for the petrochemical industry,and demand for their production has been increasing.The catalytic pyrolysis process(CPP)and the corresponding catalyst,developed by SINOPEC Research Institute of Petroleum Processing Co.,Ltd.,are designed to maximize the light olefin yield from catalytic cracking of heavy feedstocks.However,owing to the continuing degradation of feedstocks,the original catalyst can no longer maintain its activity.Herein,we describe the rational design of the new catalyst,Epylene,from a new metal-modified hierarchical ZSM-5 zeolite and matrix.Epylene was tested in the CPP unit of Shaanxi Yanchang Coal Yulin Energy and Chemical Company.A test run and base run were conducted to demonstrate the better performance of Epylene compared with the original catalyst.The properties of the feedstocks and the operating conditions in both runs were similar.The light olefin yield was increased from 33.95%to 36.50%and the coke yield was only 9.58%in the test run,which was lower than that in the base run. 展开更多
关键词 catalytic pyrolysis process light olefins CATALYST
下载PDF
Cerium-tungsten oxides supported on activated red mud for the selective catalytic reduction of NO_(x) 被引量:1
19
作者 Qiuzhun Chen Dong Wang +7 位作者 Chuan Gao Bin Wang Shengli Niu Gaiju Zhao Yue Peng Junhua Li Chunmei Lu John Crittenden 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期173-182,共10页
Activated red mud(RM)has been proved to be a promising base material for the selective catalysis reduction(SCR)of NOx.The inherent low reducibility and acidity limited its low-temperature activity.In this work,molybde... Activated red mud(RM)has been proved to be a promising base material for the selective catalysis reduction(SCR)of NOx.The inherent low reducibility and acidity limited its low-temperature activity.In this work,molybdenum oxide,tungsten oxide,and cerium oxide were used to reconfigure the redox sites and acid sites of red mud based catalyst.When activated red mud was reconfigured by cerium-tungsten oxide(Ce-W@RM),the NOx conversion kept above 90%at 219-480℃.The existence of Ce^(3+)/Ce^(4+) redox electron pairs provided more surface adsorbed oxygen(O_(α)) and served as a redox cycle.Positive interactions between Ce,W species and Fe oxide in red mud occurred,which led to the formation of unsaturated chemical bond and promoted the activation of adsorbed NH_(3) species.WO_(3) and Ce_(2)(WO_(4))_(3)(formed by solid-state reaction between Ce and W species)could provide more Brønsted acid sites(W-O modes of WO_(3),W=O or W-O-W modes of Ce_(2)(WO_(4))_(3)).CeO_(2) species could provide more Lewis acid sites.The Langmuir-Hinshelwood(L-H)routes and Eley-Rideal(E-R)routes occurred in the low-temperature SCR reaction on the Ce-W@RM surface.NH_(4)^(+) species on Brønsted acid sites,NH_(3) species on Lewis acid sites,bidentate nitrate and bridging nitrate species were key active intermediates species. 展开更多
关键词 Air pollution control NOx Selective catalytic reduction CERIUM TUNGSTEN
下载PDF
The hydrogen storage performance and catalytic mechanism of theMgH_(2)-MoS_(2)composite 被引量:1
20
作者 Luxiang Wang Yiwanting Hu +5 位作者 Jiayu Lin Haiyan Leng Chenghua Sun Chengzhang Wu Qian Li Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2530-2540,共11页
In this work,we synthesized MoS_(2)catalyst via one-step hydrothermal method,and systematically investigated the catalytic effect of MoS_(2)on the hydrogen storage properties of MgH_(2).The MgH_(2)-5MoS_(2)composite m... In this work,we synthesized MoS_(2)catalyst via one-step hydrothermal method,and systematically investigated the catalytic effect of MoS_(2)on the hydrogen storage properties of MgH_(2).The MgH_(2)-5MoS_(2)composite milled for 5 h starts to release hydrogen at 259℃.Furthermore,it can desorb 4.0 wt.%hydrogen within 20 min at 280℃,and absorb 4.5 wt.%hydrogen within 5 min at 200℃.Mo and MoS_(2)coexistedin the ball milled sample,whereas only Mo was kept in the sample after dehydrogenation and rehydrogenation,which greatly weakens theMg-H bonds and facilitates the dissociation of MgH_(2)on the surface of Mo(110).The comparative study show that the formed MgS has nocatalytic effect for MgH_(2).We believed that the evolution and the catalytic mechanism of MoS_(2)will provide the theoretical guidance for theapplication of metal sulfide in hydrogen storage materials. 展开更多
关键词 Hydrogen storage Magnesium hydride MoS_(2) EVOLUTION catalytic mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部