期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Catalytic methanation of syngas over Ni-based catalysts with different supports 被引量:3
1
作者 Yincong Liu Lingjun Zhu +5 位作者 Xiaoliu Wang Shi Yin Furong Leng Fan Zhang Haizhou Lin Shurong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期602-608,共7页
Co-precipitation method was selected for the preparation of Ni/Al_2O_3, Ni/ZrO_2 and Ni/CeO_2 catalysts, and their performances in methanation were investigated in this study. The structure and surface properties of t... Co-precipitation method was selected for the preparation of Ni/Al_2O_3, Ni/ZrO_2 and Ni/CeO_2 catalysts, and their performances in methanation were investigated in this study. The structure and surface properties of these catalysts were characterized by BET, XRD, H_2-TPD, TEM and H_2-TPR. The results showed that the catalytic activity at low temperature followed the order: Ni/Al_2O_3>Ni/ZrO_2>Ni/CeO_2. Ni/Al_2O_3 catalyst presented the best catalytic performance with the highest CH_4 selectivity of 94.5%. The characterization results indicated that the dispersion of the active component Ni was the main factor affecting the catalytic activity and the one with higher dispersion gave better performance. 展开更多
关键词 Methanation Ni dispersion catalytic activity Catalyst support Stability
下载PDF
SYNTHETIC AND CATALYTIC PROPERTY STUDIES ON SILICA SUPPORTED BIS-(ACETYLACETONATO) COBALT(Ⅱ) COMPLEXES^(**)
2
作者 李小虎 陆云 林思聪 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1992年第3期210-217,共8页
This paper reports mainly the preparation of silica supported acetylacetone ligands and their cobalt complexes, the characterization of their chemical structure, and the evaluation of their catalytic activity in the r... This paper reports mainly the preparation of silica supported acetylacetone ligands and their cobalt complexes, the characterization of their chemical structure, and the evaluation of their catalytic activity in the reaction for the preparation of ethers directly from alkanols and benzyl chloride. The results indicate that those silica supported β-diketone cobalt complexes (SACO) not only can simplify the reaction procedure of the ether preparation but also show a much higher catalytic activity in comparison with other homogeneous catalysts. In addition, SACO can be recovered and reused although their catalytic activity descend gradually as a result of the decrease in their cobalt content. 展开更多
关键词 SYNTHETIC AND catalytic PROPERTY STUDIES ON SILICA supportED BIS COBALT COMPLEXES ACETYLACETONATO
下载PDF
Pt/FeSnO(OH)_5: A Novel Supported Pt Catalyst for Catalytic Oxidation of Benzene
3
作者 俞瀚 曹周明 +1 位作者 魏笑峰 于岩 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第6期889-902,共14页
Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of... Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of the catalysts by XRD, SEM, TEM, EDS, XPS, BET, TGA and DTA, we found most Pt could be reduced to metallic state when the hydroxyl catalyst was used as supporter, and the metallic Pt in Pt/Fe Sn O(OH)5 was more active than the oxidized Pt in Pt/γ-Al_2O_3 in catalytic oxidation of VOCs. Pt/FeSnO(OH)_5 shows both good catalytic activity and high stability, which may be a promising catalyst. This study may also be helpful for the design and fabrication of new catalysts. 展开更多
关键词 FeSnO(OH)5 supported Pt catalyst catalytic oxidation of benzene
下载PDF
Effects of support property on the catalytic performance of CeO_2-ZrO_2-CrO_x for 1,2-dichloroethane oxidation 被引量:8
4
作者 陶飞 杨姗姗 +2 位作者 杨鹏 石智男 周仁贤 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第4期381-389,共9页
HZSM-5, Al_2O_3, TiO_2 and SiO_2 supported CeO_2-ZrO_2-CrO_x catalysts were prepared by deposition-precipitation method and tested for deep catalytic oxidation of 1,2-dichloroethane(DCE), as one of the common chlori... HZSM-5, Al_2O_3, TiO_2 and SiO_2 supported CeO_2-ZrO_2-CrO_x catalysts were prepared by deposition-precipitation method and tested for deep catalytic oxidation of 1,2-dichloroethane(DCE), as one of the common chlorinated organic pollutants. All the catalysts were characterized by means of N_2 adsorption-desorption, X-ray photoelectron spectroscopy(XPS), ammonia-temperatureprogrammed desorption(NH_3-TPD) and hydrogen temperature-programmed reduction(H2-TPR). The characterization results revealed that there was strongly synergistic effect between the oxidizability of CZCr species and the acidity of supports, which obviously promoted the catalytic activity for DCE degradation. 20% CZCr/HZSM-5 showed the highest activity and good durability during the long-term continuous test. The catalytic activity decreased in the order: 20%CZCr/HZSM-5〉CZCr〉20%CZCr/TiO_2〉20%CZCr/Al_2O_3〉20%CZCr/SiO_2. 展开更多
关键词 acidic support composite oxide catalytic oxidation thermal stability 1 2-dichloroethane rare earths
原文传递
Plasma-assisted Co/Zr-metal organic framework catalysis of CO_(2)hydrogenation:influence of Co precursors
5
作者 Yanqin LI Jing ZHAO +4 位作者 Decai BU Xulei ZHANG Teng PENG Lanbo DI Xiuling ZHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第5期104-110,共7页
In this study,Co/Zr-metal organic framework(MOF)precursors were obtained by a roomtemperature liquid-phase precipitation method and the equivalent-volume impregnation method,respectively,using a Zr-MOF as the support,... In this study,Co/Zr-metal organic framework(MOF)precursors were obtained by a roomtemperature liquid-phase precipitation method and the equivalent-volume impregnation method,respectively,using a Zr-MOF as the support,and Co/Zr-MOF-M and Co/Zr-MOF-N catalysts were prepared after calcination in a hydrogen-argon mixture gases(VAr:V_(H_(2))=9:1)at 350℃for 2 h.The catalytic activities of the prepared samples for CO_(2)methanation under atmosphericpressure cold plasma were studied.The results showed that Co/Zr-MOF-M had a good synergistic effect with cold plasma.At a discharge power of 13.0 W,V_(H_(2)):VCO_(2)=4:1 and a gas flow rate of 30 ml·min^(-1),the CO_(2)conversion was 58.9%and the CH4 selectivity reached 94.7%,which was higher than for Co/Zr-MOF-N under plasma(CO_(2)conversion 24.8%,CH4 selectivity 9.8%).X-ray diffraction,scanning electron microscopy,transmission electron microscopy,N_(2)adsorption and desorption(Brunauer-Emmett-Teller)and x-ray photoelectron spectroscopy analysis results showed that Co/Zr-MOF-M and Co/Zr-MOF-N retained a good Zr-MOF framework structure,and the Co oxide was uniformly dispersed on the surface of the Zr-MOF.Compared with Co/Zr-MOF-N,the Co/Zr-MOF-M catalyst has a larger specific surface area and higher Co^(2+)/Cototaland Co/Zr ratios.Additionally,the Co oxide in Co/ZrMOF-M is distributed on the surface of the Zr-MOF in the form of porous particles,which may be the main reason why the catalytic activity of Co/Zr-MOF-M is higher than that of Co/ZrMOF-N. 展开更多
关键词 atmospheric-pressure cold plasma CO_(2) supported Co catalytic materials metal organic framework
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部