Lithium-sulfur(Li-S)batteries have been considered as the next generation high energy storage devices.However,its commercialization has been hindered by several issues,especially the dissolution and shuttle of the sol...Lithium-sulfur(Li-S)batteries have been considered as the next generation high energy storage devices.However,its commercialization has been hindered by several issues,especially the dissolution and shuttle of the soluble lithium polysulfides(LiPSs)as well as the slow reaction kinetics of LiPSs which may make shuttling effect even worse.Herein,we report a strategy to address this issue by in-situ transformation of Co−N_(x) coordinations in cobalt polyphthalocyanine(CoPPc)into Co nanoparticles(Co NPs)embedded in carbon matrix and mono-dispersed on graphene flakes.The Co NPs can provide rich binding and catalytic sites,while graphene flakes act as ideally LiPSs transportation and electron conducting platform.With a remarkable enhanced reaction kinetics of LiPSs via these merits,the sulfur host with a sulfur content up to 70 wt%shows a high initial capacity of 1048 mA∙h/g at 0.2C,good rate capability up to 399 mA·h/g at 2C.展开更多
基金Project(21905220) supported by the National Natural Science Foundation of ChinaProject(BK20201190) supported by the Jiangsu Provincial Department of Science and Technology,China+2 种基金Projects(2018ZDXM-GY-135,2021JLM-36) supported by the Key Research and Development Plan of Shaanxi Province,ChinaProject(HG6J003) supported by the Fundamental Research Funds for “Young Talent Support Plan” of Xi’ an Jiaotong University,ChinaProject supported by the “1000-Plan program” of Shaanxi Province,China。
文摘Lithium-sulfur(Li-S)batteries have been considered as the next generation high energy storage devices.However,its commercialization has been hindered by several issues,especially the dissolution and shuttle of the soluble lithium polysulfides(LiPSs)as well as the slow reaction kinetics of LiPSs which may make shuttling effect even worse.Herein,we report a strategy to address this issue by in-situ transformation of Co−N_(x) coordinations in cobalt polyphthalocyanine(CoPPc)into Co nanoparticles(Co NPs)embedded in carbon matrix and mono-dispersed on graphene flakes.The Co NPs can provide rich binding and catalytic sites,while graphene flakes act as ideally LiPSs transportation and electron conducting platform.With a remarkable enhanced reaction kinetics of LiPSs via these merits,the sulfur host with a sulfur content up to 70 wt%shows a high initial capacity of 1048 mA∙h/g at 0.2C,good rate capability up to 399 mA·h/g at 2C.