The dectrochemical reduction characteristics of carbon tetrachlofide (CT) were investigated using cyclic voltammetry in this study. In addition, the difference in reduction mechanisms of CT between Master Builders'...The dectrochemical reduction characteristics of carbon tetrachlofide (CT) were investigated using cyclic voltammetry in this study. In addition, the difference in reduction mechanisms of CT between Master Builders' iron and the catalyzed Fe-Cu process was discussed. The results showed that CT was reduced directly on the surface of copper rather than by atomic hydrogen produced at the cathode in the catalyzed Fe-Cu process. The reduction was realized largely by atomic hydrogen in Master Builders' iron. The entire CT in 350 ml aqueous solution with 320 mg/L was reduced to trichloromethane and dichloromethane in 2.25 h when 100 g of scrap iron with Fe/Cu ratio of 10:1 (w/w) were used. Moreover, the reduction rate slowed with time. CT could be reduced at acidic, neutral and alkaline pH from solution by Fe-Cu bimetallic media, but the mechanisms were different. The degradation rate was not significantly influenced by pH in the catalyzed Fe-Cu process; in Master Builders' iron it clearly increased with decreasing pH. The kinetics of the reductions followed pseudo-first order in both cases. Furthermore, the reductions under acidic conditions proceeded faster than that under the neutral and alkaline conditions. The catalyzed Fe-Cu process was superior to Master Builders' iron in treating CT-containing water and this advantage was particularly noticeable under alkaline conditions. The reduction was investigated in the cathode (Cu) and anode (Fe) compartments respectively, the results showed that the direct reduction pathway played an important role in the reduction by the catalyzed Fe-Cu process. The catalyzed Fe-Cu process is of practical value.展开更多
The reduction of the nitrobenzene compounds (NBCs) by the catalyzed Fe-Cu process and the relationship between the electrochemical reduction characteristics of NBCs at copper electrode and reduction rate were studie...The reduction of the nitrobenzene compounds (NBCs) by the catalyzed Fe-Cu process and the relationship between the electrochemical reduction characteristics of NBCs at copper electrode and reduction rate were studied in alkaline medium(pH=11). The catalyzed Fe-Cu process was found more effective on degradation of NBCs compared to Master Builder's iron. The reduction rate by the catalyzed Fe-Cu process decreased in the following order: nitrobenzene 〉4-chloro-nitrobenzene ≥m-dinitrobenzene :〉 4-nitrophenol ≥2,4-dinitrotoluene 〉2-nitrophenol. The reduction rate by Master Builder's iron decreased in the following order: m-dinitrobenzene ≥4-chloro-nitrobenzene 〉4-nitrophenol 〉2,4-dinitrotoluene ≈nitrobenzene 〉2-nitrophenol. NBCs were reduced directly on the surface of copper rather than by the hydrogen produced at cathode in the catalyzed Fe-Cu process. The reduction was realized by the hydrogen produced at cathode and Fe(OH)2 in Master Builder's iron, It is an essential difference in reaction mechanisms between these two technologies. For this reason, the reduction by the catalyzed Fe-Cu depended greatly on NBC's electron withdrawing ability.展开更多
Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the t...Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.展开更多
The life cycle analysis of biodiesel production from palm oil (PO) involves 3 stages: 1) Cultivation;2) Oil Extraction and 3) Transesterification of PO. There are several different approaches to the production process...The life cycle analysis of biodiesel production from palm oil (PO) involves 3 stages: 1) Cultivation;2) Oil Extraction and 3) Transesterification of PO. There are several different approaches to the production process. The enzyme catalyzed process, was investigated and its environmental performance was compared with the conventional alkali-catalyzed process by using life cycle analysis (LCA). The enzyme catalyzed process is found to be technically a simpler production process and offers the production of less environmentally damaging wastes.展开更多
Iron and copper bimetallic system(catalyzed Fe-Cu process)is a promising technology for alkaline nitrobenzene-containing wastewater treatment.However,little is currently known about the changes of treatment efficiency...Iron and copper bimetallic system(catalyzed Fe-Cu process)is a promising technology for alkaline nitrobenzene-containing wastewater treatment.However,little is currently known about the changes of treatment efficiency with time going.This research investigated the long-term performance of the catalyzed Fe-Cu process to reduce nitrobenzene(NB)in alkaline wastewater.In addition,the changes of the metal surfaces morphologies and matters before and after the reaction were analyzed by scanning electron microscopy(SEM)in conjunction with energy-dispersion spectroscopy(EDS)and X-ray diffraction spectros-copy(XRD).The results showed that the surface properties of copper almost remained unchanged after weeks of operation,which spelled its strong chemical stability and resistance to poisoning.Moreover,the results indicated that there were two reasons for the treatment efficiency decreasing with time.One was the gradual iron element consumption due to corro-sion.The other was iron reactivity weakened due to the precipitates accumulation on the surfaces that were mainly Fe_(3)O_(4) and FeCO.展开更多
基金Project supported by the Hi-Tech Research and Development Program(863) of China (No. 2002AA601270)
文摘The dectrochemical reduction characteristics of carbon tetrachlofide (CT) were investigated using cyclic voltammetry in this study. In addition, the difference in reduction mechanisms of CT between Master Builders' iron and the catalyzed Fe-Cu process was discussed. The results showed that CT was reduced directly on the surface of copper rather than by atomic hydrogen produced at the cathode in the catalyzed Fe-Cu process. The reduction was realized largely by atomic hydrogen in Master Builders' iron. The entire CT in 350 ml aqueous solution with 320 mg/L was reduced to trichloromethane and dichloromethane in 2.25 h when 100 g of scrap iron with Fe/Cu ratio of 10:1 (w/w) were used. Moreover, the reduction rate slowed with time. CT could be reduced at acidic, neutral and alkaline pH from solution by Fe-Cu bimetallic media, but the mechanisms were different. The degradation rate was not significantly influenced by pH in the catalyzed Fe-Cu process; in Master Builders' iron it clearly increased with decreasing pH. The kinetics of the reductions followed pseudo-first order in both cases. Furthermore, the reductions under acidic conditions proceeded faster than that under the neutral and alkaline conditions. The catalyzed Fe-Cu process was superior to Master Builders' iron in treating CT-containing water and this advantage was particularly noticeable under alkaline conditions. The reduction was investigated in the cathode (Cu) and anode (Fe) compartments respectively, the results showed that the direct reduction pathway played an important role in the reduction by the catalyzed Fe-Cu process. The catalyzed Fe-Cu process is of practical value.
文摘The reduction of the nitrobenzene compounds (NBCs) by the catalyzed Fe-Cu process and the relationship between the electrochemical reduction characteristics of NBCs at copper electrode and reduction rate were studied in alkaline medium(pH=11). The catalyzed Fe-Cu process was found more effective on degradation of NBCs compared to Master Builder's iron. The reduction rate by the catalyzed Fe-Cu process decreased in the following order: nitrobenzene 〉4-chloro-nitrobenzene ≥m-dinitrobenzene :〉 4-nitrophenol ≥2,4-dinitrotoluene 〉2-nitrophenol. The reduction rate by Master Builder's iron decreased in the following order: m-dinitrobenzene ≥4-chloro-nitrobenzene 〉4-nitrophenol 〉2,4-dinitrotoluene ≈nitrobenzene 〉2-nitrophenol. NBCs were reduced directly on the surface of copper rather than by the hydrogen produced at cathode in the catalyzed Fe-Cu process. The reduction was realized by the hydrogen produced at cathode and Fe(OH)2 in Master Builder's iron, It is an essential difference in reaction mechanisms between these two technologies. For this reason, the reduction by the catalyzed Fe-Cu depended greatly on NBC's electron withdrawing ability.
基金Supported by the National Natural Science Foundation of China (No.60574047) and the Doctorate Foundation of the State Education Ministry of China (No.20050335018).
文摘Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.
文摘The life cycle analysis of biodiesel production from palm oil (PO) involves 3 stages: 1) Cultivation;2) Oil Extraction and 3) Transesterification of PO. There are several different approaches to the production process. The enzyme catalyzed process, was investigated and its environmental performance was compared with the conventional alkali-catalyzed process by using life cycle analysis (LCA). The enzyme catalyzed process is found to be technically a simpler production process and offers the production of less environmentally damaging wastes.
基金This study was financially supported by the National High Technology Research and Development Program of China(863 Program).The researchers in the testing laboratory of Materials and Engineering College of Tongji University are highly appreciated for their helpful on XRD,SEM and EDS tests.
文摘Iron and copper bimetallic system(catalyzed Fe-Cu process)is a promising technology for alkaline nitrobenzene-containing wastewater treatment.However,little is currently known about the changes of treatment efficiency with time going.This research investigated the long-term performance of the catalyzed Fe-Cu process to reduce nitrobenzene(NB)in alkaline wastewater.In addition,the changes of the metal surfaces morphologies and matters before and after the reaction were analyzed by scanning electron microscopy(SEM)in conjunction with energy-dispersion spectroscopy(EDS)and X-ray diffraction spectros-copy(XRD).The results showed that the surface properties of copper almost remained unchanged after weeks of operation,which spelled its strong chemical stability and resistance to poisoning.Moreover,the results indicated that there were two reasons for the treatment efficiency decreasing with time.One was the gradual iron element consumption due to corro-sion.The other was iron reactivity weakened due to the precipitates accumulation on the surfaces that were mainly Fe_(3)O_(4) and FeCO.