This research demonstrates the production of mesoporous activated carbon from sargassum fusiforme via physical activation with carbon dioxide.Central composite design was applied to conduct the experiments at differen...This research demonstrates the production of mesoporous activated carbon from sargassum fusiforme via physical activation with carbon dioxide.Central composite design was applied to conduct the experiments at different levels by altering three operating parameters.Activation temperature(766-934℃),CO2 flow rate(0.8-2.8 L·min^-1)and activation time(5-55 min)were the variables examined in this study.The effect of parameters on the specific surface area,total pore volume and burn-out rate of activated carbon was studied,and the influential parameters of methylene blue adsorption value were identified employing analysis of variance.The optimum conditions for maximum methylene blue adsorption value were:activation temperature=900℃,activation time=29.05 min and CO2 flow rate=1.8 L·min(-1).The activated carbon produced under optimum conditions was characterized by BET,FTIR and SEM.The adsorption behavior on congo red was studied.The effect of parameters on the adsorbent dosage,temperature,PH and initial congo red concentration was investigated.The adsorption properties of the activated carbon were investigated by kinetics.The equilibrium removal rate and maximum adsorption capacity reaches up to 94.72%,234 mg·g^-1,respectively when initial congo red concentration is 200 mg·L^-1 under adsorbent dosage(0.8 g·L^-1),temperature(30℃),PH7.展开更多
Mesoporous activated carbons were prepared from direct coal liquefaction residue (CLR) by KOH activation method, and the experiments were carried out to investigate the effects of KOH/CLR ratio, solvent for mixing t...Mesoporous activated carbons were prepared from direct coal liquefaction residue (CLR) by KOH activation method, and the experiments were carried out to investigate the effects of KOH/CLR ratio, solvent for mixing the CLR and KOH, and carbonization procedure on the resultant carbon texture and catalytic activity for catalytic methane decomposition (CMD). The results showed that optimal KOH/CLR ratio of 2 : 1; solvent with higher solubility to KOH or the CLR, and an appropriate carbonization procedure are conductive to improving the carbon pore structure and catalytic activity for CMD. The resultant mesoporous carbons show higher and more stable activity than microporous carbons. Additionally, the relationship between the carbon textural properties and the catalytic activity for CMD was also discussed.展开更多
Malaysian Selantik low-rank coal(SC)was used as a precursor to prepare a form of mesoporous activated carbon(SC-AC)with greater surface area(SA)via a microwave induced KOH-activation method.The characteristics of the ...Malaysian Selantik low-rank coal(SC)was used as a precursor to prepare a form of mesoporous activated carbon(SC-AC)with greater surface area(SA)via a microwave induced KOH-activation method.The characteristics of the SC and SC-AC were evaluated by the iodine number,ash content,bulk density,and moisture content The structure and surface characterization was carried out using pore structure analysis(BET),scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDX),X-ray diffraction(XRD),Fourier Transform Infrared(FTIR),elemental analysis(CHNS),thermogravimetric analysis(TGA),and determination of the point of zero charge(pH(PZC)).These results signify a mesoporous structure of SC-AC with an increase of ca.1160 times(BET SA=1094.3 m^2·g^-1)as compared with raw SC without activation(BET SA=1.23 m^2·g^-1).The adsorptive properties of the SC-AC with methylene blue(MB)was carried out at variable adsorbent dose(0.2-1.6 g·L^-1),solution pH(2-12),initial MB concentrations(25-400 mg·L^-1),and contact time(0-290 min)using batch mode operation.The kinetic profiles follow pseudo-second order kinetics and the equilibrium uptake of MB conforms to the Langmuir model with a maximum monolayer adsorption capacity of 491.7 mg g^-1 at 303 K.Thermodynamic functions revealed a spontaneous endothermic adsorption process.The mechanism of adsorption included mainly electrostatic attractions,hydrogen bonding interaction,andπ-πstacking interaction.This work shows that Malaysian Selantik low-rank coal is a promising precursor for the production of low-cost and efficient mesoporous activated carbon with substantive surface area.展开更多
Preparation of activated carbons by a physical activation technique is performed using the methods of coal pyrolysis and gasification at different temperatures. As increasing pyrolysis temperature from 520°C ...Preparation of activated carbons by a physical activation technique is performed using the methods of coal pyrolysis and gasification at different temperatures. As increasing pyrolysis temperature from 520°C to 700°C, the yield of activated carbons from the Khuut (KH) sub-bituminous coal is lowered, and amount of micropores increases gradually;however there is no development of mesopores by the KH coal pyrolysis. When the KH coal has a small loss during its physical activation due to difficulty and inactivity of its macrostructure decomposition, the smaller porosity is developed in the resulting carbons. The Aduunchuluun (AD) lignite is activated by pyrolysis and gasification at the highest temperature of 700°C in the present study. It is identified that the gasification of AD lignite develops well a porous structure with the highest surface area of 522 m2/g which is three times larger than that (155 m2/g) of the activated carbon produced by pyrolysis of the same lignite. The IR and SEM analysis confirm a significant difference in chemical and structural changes between the AD, KH raw coals and corresponding carbon samples in the physical activation processes.展开更多
This work explores the feasibility of Jerusalem artichoke stem (JAS), an agricultural waste, as an alternative precursor for fabrication of mesoporous activated carbon (MAC) via conventional ZnC12 activation. The ...This work explores the feasibility of Jerusalem artichoke stem (JAS), an agricultural waste, as an alternative precursor for fabrication of mesoporous activated carbon (MAC) via conventional ZnC12 activation. The as-prepared JAS-MACs were characterized by thermogravimetric, nitrogen gas adsorption isotherm and high resolution scanning electron microscopy analysis. The interacting effects of chemical dosage, activation temperature and time on the mesoporosity, mesopore volume and carbon yield were investigated, and further optimized by response surface methodology (RSM). The Brunauer-Emmett-Teller surface area, mesoporosity and mesopore volume of the JAS-MAC prepared under optimum condition were identified to be 1631 m^2·g ^-1, 90.16% and 1.11 cm3·g ^-1, respectively. Compared with commercial activated carbons, this carbon exhibited a comparable monolayer adsorption capacity of 374.5 mg .g 1 for Methylene Blue dye. The findings suggest that RSM could be an effective approach for optimizing the pore structure of fabricated activated carbons.展开更多
Cylindrical coconut activated carbon(CCAC) support was graphitized at a high temperature(1900 ℃) in argon, then oxidized with an O2-N2-H2O mixture, and treated with nitric acid. Pretreatment of carbon support on ...Cylindrical coconut activated carbon(CCAC) support was graphitized at a high temperature(1900 ℃) in argon, then oxidized with an O2-N2-H2O mixture, and treated with nitric acid. Pretreatment of carbon support on its mechanical strength, physical structure, chemical composition and surface properties of cylindrical CCAC support was investigated by X-ray diffraction(XRD), surface area analysis, scanning electron microscopy(SEM), energy dis- persive spectroscopy(EDS), thermogravimetric-differential thermogravimetric(TG-DTG) analysis and temperature programmed desorption-mass spectrometry(TPD-MS), and the effect of CCAC support on the catalytic activities was also studied. The results show that the degree of graphitization, the purity(phosphorus, sulphur), pore struc- ture(micropore, mesopore) and oxygen-containing functional groups(--COOH, --OH, --COOR) of carbon supports are obviously different, which have a great influence on the performance of Ru-based catalysts. After a series of pre- treatments, the surface physical and chemical properties of the commercial CCAC are modified and improved, and the activity of as-prepared Ru/AC catalyst is increased significantly.展开更多
A mesoporous activated carbon (AC) can be successfully prepared by catalytic activation with carbon dioxide. For iron oxide as catalyst, there were two regions of mesopore size distribution, i.e. 2-5nm and 30-70nm. Wh...A mesoporous activated carbon (AC) can be successfully prepared by catalytic activation with carbon dioxide. For iron oxide as catalyst, there were two regions of mesopore size distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxide coexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30-70nm were increased significantly. For comparison, AC reactivated by carbon dioxide directly was also investigated. It was shown that the size of mesopores of the resulting AC concentrated in 2-5nm with less volume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility of mesopore formation were discussed.展开更多
Stellera chamaejasme,widely distributed on the Qinghai-Tibet Plateau,is a poisonous plant causing serious harm to grassland.Activated carbons have been prepared from the roots of Stellera chamaejasme via phosphoric ac...Stellera chamaejasme,widely distributed on the Qinghai-Tibet Plateau,is a poisonous plant causing serious harm to grassland.Activated carbons have been prepared from the roots of Stellera chamaejasme via phosphoric acid and zinc chloride activation at500°C for 60 min with an impregnation ratio of 3:1.Yield(25.1%-27.6%),ash(4.5%-4.9%),methylene blue(195.0 mg/g-254.5 mg/g),iodine value(720.4 mg/g-810.5 mg/g),specific surface area(1023.3 m2/g-1216.7 m2/g),specific pore volume(2.13 cm3/g-2.26 cm3/g),mesopore volume(1.30 cm3/g-1.59 cm3/g)and average pore size(5.88nm-7.45 nm)of the products were determined.The results from both the zinc chloride and phosphoric acid activation processes showed that the activated carbons of S.chamaejasme roots exhibit a characterization of natural developed mesopores.展开更多
The effects of peptides,amino acids and organic bases as an axial ligand on reaction ac- tivities in the electrocarboxylation of benzyl chloride with CO_2 catalyzed by CoTPP are reported. The imidazole organic base,pe...The effects of peptides,amino acids and organic bases as an axial ligand on reaction ac- tivities in the electrocarboxylation of benzyl chloride with CO_2 catalyzed by CoTPP are reported. The imidazole organic base,peptide containing —SH and amino acid containing imidazolyl en- hance the catalytic activity.The effect of imidazole amounts on the catalytic activity of CoTPP is studied.展开更多
The catalyzation of CoTPP for electrocarboxylation of alkyl halides, alkenes and ketones with CO_2 are studied. The electrocarboxylation of these organic compounds with CO_2 in the presenec of catalyst can occur at mo...The catalyzation of CoTPP for electrocarboxylation of alkyl halides, alkenes and ketones with CO_2 are studied. The electrocarboxylation of these organic compounds with CO_2 in the presenec of catalyst can occur at more positive potential than that of no catalyst. The products of electrocarboxylation were identified by UV, IR and GC-MS. The electrocarboxylation mechanisms of different organic compounds are discussed.展开更多
Developing an efficient approach of transforming biomass waste to functional carbon-based electrode materials applied in supercapacitor offers an important and high value-added practical application due to the abundan...Developing an efficient approach of transforming biomass waste to functional carbon-based electrode materials applied in supercapacitor offers an important and high value-added practical application due to the abundance and considerable low price of biomass wastes.Herein,a hierarchical carbon functionalized with electrochemical-active oxygen-containing groups was fabricated by microwave treatment from the biomass waste of camellia oleifera.The obtained mesoporous carbon(MAC)owns nanosheet morphology,rich mesoporosity,large surface area(1726 m2/g)and very high oxygenic functionalities(16.2 wt%)with pseudocapacitive activity.Prepared electrode of supercapacitor and tested in 2.0 M H2 SO4,the MAC exhibits an obvious pseudocapacitive activity and achieved a superior supercapacitive performance to that of directly activated carbon(DAC-800)including high specific capacitance(367 F/g vs.298 F/g)and better rate performance(66%vs.44%).The symmetrical supercapacitor based on MAC shows a high capacity of275 F/g,large energy density of 9.55 Wh/kg(at power density of 478 W/kg)and excellent cycling stability with 99%capacitance retention after 10000 continuous charge-discharge,endowing the obtained MAC a promising functional material for electrochemical energy storage.展开更多
Developing a highly active and durable non-noble metal catalyst for aqueous-phase levulinic acid(LA)hydrogenation to g-valerolactone(GVL)is an appealing yet challenging task.Herein,we report well-dispersed Co nanopart...Developing a highly active and durable non-noble metal catalyst for aqueous-phase levulinic acid(LA)hydrogenation to g-valerolactone(GVL)is an appealing yet challenging task.Herein,we report well-dispersed Co nanoparticles(NPs)embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient catalyst for aqueous-phase LA hydrogenation to GVL.The Co zeolitic imidazolate framework(ZIF-67)nanocrystals were anchored on the sodium dodecyl sulfate modified wipe fiber(WF-S),yielding one-dimensional(1-D)structured composite(ZIF-67/WF-S).Subsequently,Co NPs were uniformly embedded in nitrogen-doped mesoporous carbon nanofibers(Co^(R)NC/SMCNF)through a pyrolysis-reduction strategy using ZIF-67/WF-S as the precursor.Benefiting from introducing modified wipe fiber WF-S to enhance the dispersion of Co NPs,and Co^(0) with Co-N_xdual active sites,the resulting Co^(R)NC/SMCNF catalyst shows brilliant catalytic activity(206 h^(-1) turnover frequency).Additionally,the strong metal-support interactions greatly inhibited the Co NPs from aggregation and leaching from the mesoporous carbon nanofibers,and thus increasing the reusability of the Co^(R)NC/SMCNF catalyst(reusable nine times without notable activity loss).展开更多
The wastewater discharged from tanneries lack biodegradability due to the presence of recalcitrant compounds at significant concentration. The focal theme of the present investigation was to use chemo-autotrophic acti...The wastewater discharged from tanneries lack biodegradability due to the presence of recalcitrant compounds at significant concentration. The focal theme of the present investigation was to use chemo-autotrophic activated carbon oxidation(CAACO) reactor, an immobilized cell reactor using chemoautotrophs for the treatment of tannery wastewater. The treatment scheme comprised of anaerobic treatment, sand filtration, and CAACO reactor, which remove COD, BOD, TOC, VFA and sulphides respectively by 86%, 95%, 81%, 71% and 100%. Rice bran mesoporous activated carbon prepared indigenously and was used for immobilization of chemoautotrophs. The degradation of xenobiotic compounds by CAACO was confirmed through HPLC and FT-IR techniques.展开更多
基金financially supported by the Zhejiang Provincial Natural Science Foundation of China(LY16B060014)the Program for the Joint Research Fund for Overseas Chinese,Hong Kong and Macao Scholars of National Natural Science Foundation of China(Grant No.21628601)the Innovation and Development of Marine Economy Demonstration。
文摘This research demonstrates the production of mesoporous activated carbon from sargassum fusiforme via physical activation with carbon dioxide.Central composite design was applied to conduct the experiments at different levels by altering three operating parameters.Activation temperature(766-934℃),CO2 flow rate(0.8-2.8 L·min^-1)and activation time(5-55 min)were the variables examined in this study.The effect of parameters on the specific surface area,total pore volume and burn-out rate of activated carbon was studied,and the influential parameters of methylene blue adsorption value were identified employing analysis of variance.The optimum conditions for maximum methylene blue adsorption value were:activation temperature=900℃,activation time=29.05 min and CO2 flow rate=1.8 L·min(-1).The activated carbon produced under optimum conditions was characterized by BET,FTIR and SEM.The adsorption behavior on congo red was studied.The effect of parameters on the adsorbent dosage,temperature,PH and initial congo red concentration was investigated.The adsorption properties of the activated carbon were investigated by kinetics.The equilibrium removal rate and maximum adsorption capacity reaches up to 94.72%,234 mg·g^-1,respectively when initial congo red concentration is 200 mg·L^-1 under adsorbent dosage(0.8 g·L^-1),temperature(30℃),PH7.
基金supported by the National Natural Science Foundation of China(No.20906009)the Key Program Project of Joint Fund of Coal Research by NSFC and Shenhua Group(No.51134014)+2 种基金the Fundamental Research Funds for the Central Universities(No.DUT12JN05)the National Basic Research Program of China(973Program)the Ministry of Science and Technology,China(No.2011CB201301)
文摘Mesoporous activated carbons were prepared from direct coal liquefaction residue (CLR) by KOH activation method, and the experiments were carried out to investigate the effects of KOH/CLR ratio, solvent for mixing the CLR and KOH, and carbonization procedure on the resultant carbon texture and catalytic activity for catalytic methane decomposition (CMD). The results showed that optimal KOH/CLR ratio of 2 : 1; solvent with higher solubility to KOH or the CLR, and an appropriate carbonization procedure are conductive to improving the carbon pore structure and catalytic activity for CMD. The resultant mesoporous carbons show higher and more stable activity than microporous carbons. Additionally, the relationship between the carbon textural properties and the catalytic activity for CMD was also discussed.
文摘Malaysian Selantik low-rank coal(SC)was used as a precursor to prepare a form of mesoporous activated carbon(SC-AC)with greater surface area(SA)via a microwave induced KOH-activation method.The characteristics of the SC and SC-AC were evaluated by the iodine number,ash content,bulk density,and moisture content The structure and surface characterization was carried out using pore structure analysis(BET),scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDX),X-ray diffraction(XRD),Fourier Transform Infrared(FTIR),elemental analysis(CHNS),thermogravimetric analysis(TGA),and determination of the point of zero charge(pH(PZC)).These results signify a mesoporous structure of SC-AC with an increase of ca.1160 times(BET SA=1094.3 m^2·g^-1)as compared with raw SC without activation(BET SA=1.23 m^2·g^-1).The adsorptive properties of the SC-AC with methylene blue(MB)was carried out at variable adsorbent dose(0.2-1.6 g·L^-1),solution pH(2-12),initial MB concentrations(25-400 mg·L^-1),and contact time(0-290 min)using batch mode operation.The kinetic profiles follow pseudo-second order kinetics and the equilibrium uptake of MB conforms to the Langmuir model with a maximum monolayer adsorption capacity of 491.7 mg g^-1 at 303 K.Thermodynamic functions revealed a spontaneous endothermic adsorption process.The mechanism of adsorption included mainly electrostatic attractions,hydrogen bonding interaction,andπ-πstacking interaction.This work shows that Malaysian Selantik low-rank coal is a promising precursor for the production of low-cost and efficient mesoporous activated carbon with substantive surface area.
文摘Preparation of activated carbons by a physical activation technique is performed using the methods of coal pyrolysis and gasification at different temperatures. As increasing pyrolysis temperature from 520°C to 700°C, the yield of activated carbons from the Khuut (KH) sub-bituminous coal is lowered, and amount of micropores increases gradually;however there is no development of mesopores by the KH coal pyrolysis. When the KH coal has a small loss during its physical activation due to difficulty and inactivity of its macrostructure decomposition, the smaller porosity is developed in the resulting carbons. The Aduunchuluun (AD) lignite is activated by pyrolysis and gasification at the highest temperature of 700°C in the present study. It is identified that the gasification of AD lignite develops well a porous structure with the highest surface area of 522 m2/g which is three times larger than that (155 m2/g) of the activated carbon produced by pyrolysis of the same lignite. The IR and SEM analysis confirm a significant difference in chemical and structural changes between the AD, KH raw coals and corresponding carbon samples in the physical activation processes.
基金Acknowledgements The authors acknowledge funding support from the National Natural Science Foundation of China (Grant No. 41171248) and China Postdoctoral Science Foundation fimded project (2012M511330).
文摘This work explores the feasibility of Jerusalem artichoke stem (JAS), an agricultural waste, as an alternative precursor for fabrication of mesoporous activated carbon (MAC) via conventional ZnC12 activation. The as-prepared JAS-MACs were characterized by thermogravimetric, nitrogen gas adsorption isotherm and high resolution scanning electron microscopy analysis. The interacting effects of chemical dosage, activation temperature and time on the mesoporosity, mesopore volume and carbon yield were investigated, and further optimized by response surface methodology (RSM). The Brunauer-Emmett-Teller surface area, mesoporosity and mesopore volume of the JAS-MAC prepared under optimum condition were identified to be 1631 m^2·g ^-1, 90.16% and 1.11 cm3·g ^-1, respectively. Compared with commercial activated carbons, this carbon exhibited a comparable monolayer adsorption capacity of 374.5 mg .g 1 for Methylene Blue dye. The findings suggest that RSM could be an effective approach for optimizing the pore structure of fabricated activated carbons.
基金Supported by the Fundamental Research Funds for the Central Universities, China(No.2013QN81004) and the Zhejiang Postdoctoral Science Foundation, China(No.Bshl201017).
文摘Cylindrical coconut activated carbon(CCAC) support was graphitized at a high temperature(1900 ℃) in argon, then oxidized with an O2-N2-H2O mixture, and treated with nitric acid. Pretreatment of carbon support on its mechanical strength, physical structure, chemical composition and surface properties of cylindrical CCAC support was investigated by X-ray diffraction(XRD), surface area analysis, scanning electron microscopy(SEM), energy dis- persive spectroscopy(EDS), thermogravimetric-differential thermogravimetric(TG-DTG) analysis and temperature programmed desorption-mass spectrometry(TPD-MS), and the effect of CCAC support on the catalytic activities was also studied. The results show that the degree of graphitization, the purity(phosphorus, sulphur), pore struc- ture(micropore, mesopore) and oxygen-containing functional groups(--COOH, --OH, --COOR) of carbon supports are obviously different, which have a great influence on the performance of Ru-based catalysts. After a series of pre- treatments, the surface physical and chemical properties of the commercial CCAC are modified and improved, and the activity of as-prepared Ru/AC catalyst is increased significantly.
文摘A mesoporous activated carbon (AC) can be successfully prepared by catalytic activation with carbon dioxide. For iron oxide as catalyst, there were two regions of mesopore size distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxide coexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30-70nm were increased significantly. For comparison, AC reactivated by carbon dioxide directly was also investigated. It was shown that the size of mesopores of the resulting AC concentrated in 2-5nm with less volume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility of mesopore formation were discussed.
基金the National Natural Science Foundation of China,Grant No.30760195the Natural Science Foundation of Qinghai Province,China,Grant No.2015-ZJ-909the Natural Science Project of Qinghai Nationalities University,Grant No.2015XJZ01.
文摘Stellera chamaejasme,widely distributed on the Qinghai-Tibet Plateau,is a poisonous plant causing serious harm to grassland.Activated carbons have been prepared from the roots of Stellera chamaejasme via phosphoric acid and zinc chloride activation at500°C for 60 min with an impregnation ratio of 3:1.Yield(25.1%-27.6%),ash(4.5%-4.9%),methylene blue(195.0 mg/g-254.5 mg/g),iodine value(720.4 mg/g-810.5 mg/g),specific surface area(1023.3 m2/g-1216.7 m2/g),specific pore volume(2.13 cm3/g-2.26 cm3/g),mesopore volume(1.30 cm3/g-1.59 cm3/g)and average pore size(5.88nm-7.45 nm)of the products were determined.The results from both the zinc chloride and phosphoric acid activation processes showed that the activated carbons of S.chamaejasme roots exhibit a characterization of natural developed mesopores.
文摘The effects of peptides,amino acids and organic bases as an axial ligand on reaction ac- tivities in the electrocarboxylation of benzyl chloride with CO_2 catalyzed by CoTPP are reported. The imidazole organic base,peptide containing —SH and amino acid containing imidazolyl en- hance the catalytic activity.The effect of imidazole amounts on the catalytic activity of CoTPP is studied.
基金This work is supported by the National Natural Science Foundation of China
文摘The catalyzation of CoTPP for electrocarboxylation of alkyl halides, alkenes and ketones with CO_2 are studied. The electrocarboxylation of these organic compounds with CO_2 in the presenec of catalyst can occur at more positive potential than that of no catalyst. The products of electrocarboxylation were identified by UV, IR and GC-MS. The electrocarboxylation mechanisms of different organic compounds are discussed.
基金financially supported by the National Key Technology R&D Program of China(2017YFB0310704)the National Natural Science Foundation of China(21773112 and 21173119)the Fundamental Research Funds for the Central Universities
文摘Developing an efficient approach of transforming biomass waste to functional carbon-based electrode materials applied in supercapacitor offers an important and high value-added practical application due to the abundance and considerable low price of biomass wastes.Herein,a hierarchical carbon functionalized with electrochemical-active oxygen-containing groups was fabricated by microwave treatment from the biomass waste of camellia oleifera.The obtained mesoporous carbon(MAC)owns nanosheet morphology,rich mesoporosity,large surface area(1726 m2/g)and very high oxygenic functionalities(16.2 wt%)with pseudocapacitive activity.Prepared electrode of supercapacitor and tested in 2.0 M H2 SO4,the MAC exhibits an obvious pseudocapacitive activity and achieved a superior supercapacitive performance to that of directly activated carbon(DAC-800)including high specific capacitance(367 F/g vs.298 F/g)and better rate performance(66%vs.44%).The symmetrical supercapacitor based on MAC shows a high capacity of275 F/g,large energy density of 9.55 Wh/kg(at power density of 478 W/kg)and excellent cycling stability with 99%capacitance retention after 10000 continuous charge-discharge,endowing the obtained MAC a promising functional material for electrochemical energy storage.
基金financially supported by the National Key Research and Development Program of China(2018YFB1105100)the National Natural Science Foundation of China(51974339 and 51674270)the funding from Science Foundation of China University of Petroleum,Beijing(24620188JC005)。
文摘Developing a highly active and durable non-noble metal catalyst for aqueous-phase levulinic acid(LA)hydrogenation to g-valerolactone(GVL)is an appealing yet challenging task.Herein,we report well-dispersed Co nanoparticles(NPs)embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient catalyst for aqueous-phase LA hydrogenation to GVL.The Co zeolitic imidazolate framework(ZIF-67)nanocrystals were anchored on the sodium dodecyl sulfate modified wipe fiber(WF-S),yielding one-dimensional(1-D)structured composite(ZIF-67/WF-S).Subsequently,Co NPs were uniformly embedded in nitrogen-doped mesoporous carbon nanofibers(Co^(R)NC/SMCNF)through a pyrolysis-reduction strategy using ZIF-67/WF-S as the precursor.Benefiting from introducing modified wipe fiber WF-S to enhance the dispersion of Co NPs,and Co^(0) with Co-N_xdual active sites,the resulting Co^(R)NC/SMCNF catalyst shows brilliant catalytic activity(206 h^(-1) turnover frequency).Additionally,the strong metal-support interactions greatly inhibited the Co NPs from aggregation and leaching from the mesoporous carbon nanofibers,and thus increasing the reusability of the Co^(R)NC/SMCNF catalyst(reusable nine times without notable activity loss).
文摘The wastewater discharged from tanneries lack biodegradability due to the presence of recalcitrant compounds at significant concentration. The focal theme of the present investigation was to use chemo-autotrophic activated carbon oxidation(CAACO) reactor, an immobilized cell reactor using chemoautotrophs for the treatment of tannery wastewater. The treatment scheme comprised of anaerobic treatment, sand filtration, and CAACO reactor, which remove COD, BOD, TOC, VFA and sulphides respectively by 86%, 95%, 81%, 71% and 100%. Rice bran mesoporous activated carbon prepared indigenously and was used for immobilization of chemoautotrophs. The degradation of xenobiotic compounds by CAACO was confirmed through HPLC and FT-IR techniques.