In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reducti...In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming.展开更多
Based on the tunnel shape, span and depth, the previous elliptical plate model and clamped beam model were modified.The modified model was applied to different situations. For the elliptical plate model, the water eff...Based on the tunnel shape, span and depth, the previous elliptical plate model and clamped beam model were modified.The modified model was applied to different situations. For the elliptical plate model, the water effects were considered. For the clamped beam model, water and horizontal stress were considered. Corresponding potential functions and cusp catastrophe models of rock system were established based on the catastrophe theory. The expressions of critical safety thickness were derived with necessary and sufficient conditions. The method was applied to the practical engineering. Some parameters related to the stability were discussed. The results show that elastic modulus and thickness are advantageous to the floor stability, and that the load, span,horizontal stress and water are disadvantageous to the floor stability.展开更多
This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the ...This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the dangerousness of this geological disaster.The losses that are caused by water and mud inrush are taken into consideration to account for its harmfulness.Then a risk evaluation model based on the dangerousness-harmfulness evaluation indicator system is constructed,which is more convincing in comparison with the traditional methods.The catastrophe theory is used to evaluate the risk level of water and mud inrush and it has great advantage in handling problems involving discontinuous catastrophe processes.To validate the proposed approach,the Qiyueshan tunnel of Yichang-Wanzhou Railway is taken as an example in which four target segments are evaluated using the risk evaluation model.Finally,the evaluation results are compared with the excavation data,which shows that the risk levels predicted by the proposed approach are in good agreements with that observed in engineering.In conclusion,the catastrophe theory-based risk evaluation model is an efficient and effective approach for water and mud inrush in karst tunnels.展开更多
Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical...Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical mechanism of outbursts,due to instability,of thin plates of coal rocks under the action of in-plane load and normal load,by using the catastrophe theory.The total potential function is derived for the layered rock system,the cusp catastrophe model for the system is established,the bifurcation set that makes the system unstable is given,the process in which gradual change of action forces leads to catastrophic change of state is analyzed,and the effect of movement path of point(P,q) in the control space on the stability of rock plate is analyzed.The study results show that during the process of coal mining,the stability of the layered coal bodies depends not only on its physical properties and dimensions but also on the magnitudes and changing paths of the in-plane load and the normal load.When the gas in the coal bodies ahead of the mining face is pre-drained,the gas pressure can be reduced and the normal load q can be lowered.Consequently,disasters such as coal and gas outbursts can be effectively prevented.展开更多
In order to detect fault exactly and quickly, cusp catastrophe theory is used to interpret 3D coal seismic data in this paper. By establishing a cusp model, seismic signal is transformed into standard form of cusp cat...In order to detect fault exactly and quickly, cusp catastrophe theory is used to interpret 3D coal seismic data in this paper. By establishing a cusp model, seismic signal is transformed into standard form of cusp catastrophe and catastrophe parameters, including time-domain catastrophe potential, time-domain catastrophe time, frequency-domain catastrophe potential and frequency- domain degree, are calculated. Catastrophe theory is used in 3D seismic structural interpretation in coal mine. The results show that the position of abnormality of the catastrophe parameter profile or curve is related to the location of fault, and the cusp catastrophe theory is effective to automatically pick up geology information and improve the interpretation precision in 3D seismic data.展开更多
According to the engineering features of higher pile-column bridge pier in mountainous area, a clamped beam mechanical model was set up by synthetically analyzing the higher pile-column bridge pier buckling mechanism....According to the engineering features of higher pile-column bridge pier in mountainous area, a clamped beam mechanical model was set up by synthetically analyzing the higher pile-column bridge pier buckling mechanism. Based on the catastrophe theory, the cusp catastrophe model of higher pile-column bridge pier was established by the determination of its potential fimction and bifurcation set equation, the necessary instability conditions of high pile-column bridge pier were deduced, and the determination method for column-buckling and lateral displacement of high pile-column bridge pier was derived. The comparison between the experimental and calculated results show that the calculated curves agree with testing curves and the method is reasonable and effective.展开更多
Generally, different prevention measures should be taken according to spontaneous combustion propensities. The current methods to evaluate the propensity of coal spontaneous combustion, such as chromatographic method ...Generally, different prevention measures should be taken according to spontaneous combustion propensities. The current methods to evaluate the propensity of coal spontaneous combustion, such as chromatographic method of oxygen adsorption, oxidation kinetics method and activation energy method, are mostly affected by human factors. Their boundaries among different classes of propensities were all established by subjective judgments. A new evaluation method using catastrophe theory is introduced. This method can accurately depict the process of coal spontaneous combustion and the evaluation index, "catastrophe temperature", be obtained based on the model. In terms of catastrophe temperature, the spontaneous combustion propensity of different coals can be sequenced. Experimental data indicate that this method is appropriate to describe the spontaneous combustion process and to evaluate the propensity of coal svontaneous combustion.展开更多
By means of CUSP model of catastrophe theory. this paper has studied thephysics process of rockburst occured on circular chamber. The present paper has nolonly described the instability process of rockburst more deepl...By means of CUSP model of catastrophe theory. this paper has studied thephysics process of rockburst occured on circular chamber. The present paper has nolonly described the instability process of rockburst more deeply. but also got the crilicaldepth of plastic softening area of chamber that is valuable in the controlling engineering of rockburst. the chamber displacement jump and energy liberation have been derived. the influence of rock parameters on the rockburst has been discussed .展开更多
According to some local properties of Lorentz transformation, Einstein stated: 'Vetheitiss greater than that of light have no possibility of existence.' He neglected to point out the applicable range of the sp...According to some local properties of Lorentz transformation, Einstein stated: 'Vetheitiss greater than that of light have no possibility of existence.' He neglected to point out the applicable range of the special theory of relativity. In fact, it could only be applied to the subluminal-speeds. This paper shows that if ones think of the possibility of the existence of the superluminal-speeds and redescribe the special theory of relativity following Einstein's way, it could be supposed that the physical spacetime is a Finsler spacetime, characterized by the metric ds4=gijkldxidxidxkdxl. If so, a new spactime transformation could be found by invariant ds4 and the theory of relativity is discussed on this transformation it is possible that the Finsler spacetime F(x,y) may be endowed with a catastrophic nature. Based on the different properties between the ds2 and ds4, it is discussed that the flat spacetime will also have the catastrophic nature on the Finsler metric ds4. The spacetime transformations and the Physical quantities will suddenly change at the catastrophe set of the spacetime, the light cone. It will be supposed that only the dual velocity of the superluminal-speeds could be observed. If so, a particle with the superluminal-speed v> c could be regarded as its anti-particle with the dual velocity v1=c2/ v< c. On the other hand, it could be assumed that the horizon of the field of the general relativity is also a catastrophic set. If so, a particle with the superluminal-speeds could be projected near the horizon of these fields, and the particle will move on the sauce-like curves. It is very interesting that, in the Schwarzschild fields, the theoretical calculation for the sauce-like curves should be in agreement with tie data of the superluminal expansion of extragalactic radio sources observed year after year. (see Gao, 1992b).The ca- tastrophe of spacetime has some deep cosmological means. According to the some interested subjects in the Process of evolution of the universe the catastrophe nature of the Finsler spacetime and its cosmological impli= cations are discussed. It is shown that the nature of the universal evolution could be attributed to the geometric features of the Finsler spacetime. (see Cao, 1993)展开更多
The measurements by Huibin XU et al of the stress-dependence ot hysteresis in a NiTi shape memo ry alloy are modeled by catastrophe theory. The cusp catastrophe is used with the strain as the behaviour variable and t...The measurements by Huibin XU et al of the stress-dependence ot hysteresis in a NiTi shape memo ry alloy are modeled by catastrophe theory. The cusp catastrophe is used with the strain as the behaviour variable and the control parameters being functions of the stress and the temperature. A two constant model is found to be preferred to a four constant model.展开更多
In order to study the failure mechanism of backfill and the reasonable matches between backfill and rock mass, and to achieve the object of safe and efficient mining in metal mine, four types of backfills were tested ...In order to study the failure mechanism of backfill and the reasonable matches between backfill and rock mass, and to achieve the object of safe and efficient mining in metal mine, four types of backfills were tested under uniaxial compression loading, with cement?tailing ratios of 0.250:1, 0.125:1, 0.100:1 and 0.083:1, respectively. With the help of the stress?strain curves, the deformation and failure characteristics of different backfills with differing cement?tailing ratios were analyzed. Based on the experimental results, the damage constitutive equations of cemented backfills with four cement?tailing ratios were proposed on the basis of damage mechanics. Moreover, comparative analysis of constitutive model and experimental results were made to verify the reliability of the damage model. In addition, an energy model using catastrophe theory to obtain the instability criteria of system was established to study the interaction between backfill and rock mass, and then the system instability criterion was deduced. The results show that there are different damage characteristics for different backfills, backfills with lower cement?tailing ratio tend to have a lower damage value when stress reaches peak value, and damage more rapidly and more obviously in failure process after peak value of stress; the stiffness and elastic modulus of rock mass with lower strength are more likely to lead to system instability. The results of this work provide a scientific basis for the rational strength design of backfill mine.展开更多
According to the characteristics of the shock bump due to roof fall, a simple mechanics model has been established by applying the catastrophic theory and the law of energy conservation. The author suggests that the s...According to the characteristics of the shock bump due to roof fall, a simple mechanics model has been established by applying the catastrophic theory and the law of energy conservation. The author suggests that the shock bump may be induced by the sudden energy release in the roof falling after underground mineral extractions, and through the systematic analysis of actual examples on site, the empirical formulae for the roof falling and energy release are derived, which would provide a new way for the study of the origin and mechanism of mine tremor due to fallen-in roof structure. It is of a great importance to enrich the shock bump theory and production safety in mine.展开更多
The goal of this paper is to research one new characteristic of complex system. Brittleness, which is one new characteritic of complex system, is presented in this paper. The linguistic and qualitative descriptions of...The goal of this paper is to research one new characteristic of complex system. Brittleness, which is one new characteritic of complex system, is presented in this paper. The linguistic and qualitative descriptions of complex system are also given in this paper. Otherwise, the qualitative description of complex system is presented at first. On the basis of analyzing the existing brittleness problems, linguistic description and mathematic description of brittleness are given as well. Three kinds of phenomena to judge brittleness of complex system are also given, based on catastrophe theory. Basic characteristics of brittleness are given on the basis of its mathematic description. Two critical point sets are defined by using catastrophe theory. The definition of brittleness and its related theory can serve the control of complex system, and provide theoretical basis for the design and control of complex system.展开更多
Limit analysis of the stability of geomechanical projects is one of the most difficult problems.This work investigates the influences of different parameters in NL failure strength on possible collapsing block shapes ...Limit analysis of the stability of geomechanical projects is one of the most difficult problems.This work investigates the influences of different parameters in NL failure strength on possible collapsing block shapes of single and twin shallow tunnels with considering the effects of surface settlement.Upper bound solutions derived by functional catastrophe theory are used for describing the distinct characteristics of falling blocks of different parts in twin tunnels.Furthermore the analytical solutions of minimum supporting pressures in shallow tunnels are obtained by the help of the variational principle.Lastly,the comparisons are made both in collapsed mechanism and stability factor with different methods.According to the numerical results in this work,the influences of different parameters on the size of collapsing block are presented in the tables and the limit supporting loads are illustrated in the form graphs that account for the surface settlement.展开更多
Engineering construction has major influence on the permafrost environment.This paper analyzes the interaction between engineering construction and permafrost environment along the Chaidaer-Muli Railway(simply,CMR) ba...Engineering construction has major influence on the permafrost environment.This paper analyzes the interaction between engineering construction and permafrost environment along the Chaidaer-Muli Railway(simply,CMR) based on the press-state-response(PSR) framework.The permafrost environmental system is divided into three subsystems,consisting of permafrost thermal stability,proneness to the freeze-thawing erosion and permafrost ecological fragility.Each subsystem considers its most important influencing factors.Catastrophe Progression Method(CPM) is applied to calculate the current environment condition along the railway.The result indicates that:(1) as far as the thermal stability is concerned,most sections along the CMR are mainly concentrated in rank Ⅲ(fair situation),and a few in Ⅱ(good situation) and Ⅳ(bad situation),respectively;(2) for the proneness tothe freeze-thawing erosion,the entire railway route falls largely in rank Ⅱ(good situation);(3) along the CMR,the ecological fragility of the permafrost environment is in rank Ⅱ(good situation),or slightly fragile;(4) overall,the permafrost environments along the CMR are in rank Ⅲ(fair situation) or Ⅱcondition(good situation).In general,the permafrost environment along the CMR is fair.It is mainly because a series of active measures of protecting permafrost were taken for stabilizing the CMR foundation soils.On the one hand,we should try our best to minimize the influences that engineering activities have exerted on ecology and environment,on the other hand,the positive measures have made improvements to prevent the permafrost environment from deterioration.展开更多
The propagation characteristics of the Pearcey–Gaussian(PG) beam in turbulent atmosphere are investigated in this paper.The Pearcey beam is a new kind of paraxial beam,based on the Pearcey function of catastrophe t...The propagation characteristics of the Pearcey–Gaussian(PG) beam in turbulent atmosphere are investigated in this paper.The Pearcey beam is a new kind of paraxial beam,based on the Pearcey function of catastrophe theory,which describes diffraction about a cusp caustic.By using the extended Huygens–Fresnel integral formula in the paraxial approximation and the Rytov theory,an analytical expression of axial intensity for the considered beam family is derived.Some numerical results for PG beam propagating in atmospheric turbulence are given by studying the influences of some factors,including incident beam parameters and turbulence strengths.展开更多
Since rural microfinance is a credit which grants loans without collateral and guarantees to farmers,it is considerably important to evaluate and control the household credit risk.Through establishing the evaluation i...Since rural microfinance is a credit which grants loans without collateral and guarantees to farmers,it is considerably important to evaluate and control the household credit risk.Through establishing the evaluation index system and then using catastrophe progression theory,three common types of catastrophe system and the normalization formula,we get the comprehensive evaluation.Finally,we take the empirical test and the result shows that this method is simpler and more objective which can be used by the credit cooperatives to decide whether to authorize the loans.展开更多
The goal of sustainoble development is to preserve sustainabitity trod simultaneously prevent catastrophe in a man-land .system. However, almost all the existing approaches to assessing sustainable development are to ...The goal of sustainoble development is to preserve sustainabitity trod simultaneously prevent catastrophe in a man-land .system. However, almost all the existing approaches to assessing sustainable development are to measure the sustainability. namely appraise from the obverse side of the sustainable development. So it seems necessary to attack the same task on the reverse, namely to measure the passibility of eatostrophe. In this paper, with a case study of Tianjin, China. we employ catastrophe theory and models to integrate Tianjin's sustainable development indicators, and then deduce the catastrophe risk index ( CRI) to present the level of catastrophic possibility in the city. Applying catastrophe theory, is a new strategy to assess sustainable development and shows great practical significance, especially for those developing regions or countries, who always give more priority to their economy and therefore have more obligation to make sure whether their social economic activities might bring forth any ecological environment catastrophe. Besides, being both qualitative and quantitative, the approach could be employed to explore not only static characteristics bat also dynamic mechanism of man-land system. Although our work is only a maiden attempt and still calls for further effort to improve it, the case study of Tianjin in this paper would assure as the great promising future to apply, catastrophe theory to sustoinable devetopment modeling,展开更多
Catastrophe theory was applied to the investigation of nonlinear dynamic stability of composite laminated plates. The influence of large deflection, initial imperfection, support conditions and ply_angle of the fibers...Catastrophe theory was applied to the investigation of nonlinear dynamic stability of composite laminated plates. The influence of large deflection, initial imperfection, support conditions and ply_angle of the fibers were considered. The catastrophic models and the critical conditions of dynamic buckling of composite laminated plates are obtained.展开更多
To identify the potential groundwater bearing zones for future groundwater resources development of the study area, an investigation has been made using lithology, groundwater monitoring and elevation data. The strati...To identify the potential groundwater bearing zones for future groundwater resources development of the study area, an investigation has been made using lithology, groundwater monitoring and elevation data. The stratigraphic cross-sections of the area reveal six distinct hydrostratigraphic features viz. clay-silt-sand, fine sand, fine to medium sand, medium sand, medium to coarse sand and coarse sand. On the basis of lithological information, the groundwater bearing zone of the area has been divided into two main hydrostratigraphic units viz. aquitard and aquifer, which consist of clay-silt-sand and sands of different grain sizes respectively. The aquifer zone is further divided into two categories: “small scale aquifer” made dominantly of fine and “main aquifer” comprising of fine-medium to coarse sand. The annual fluctuation of water table in the study area is observed from 4.9 m to 5.6 m. The area is demarcated as three different groundwater bearing zones based on Catastrophe theory using GIS.展开更多
基金Financial supports for this work, provided by the National Natural Science Foundation of China (No. 51274097)the Scientific Research Fund of Hunan Provincial Education Department of China (No. 13A020)the Open Projects of State Key Laboratory of Coal Resources and Safe Mining, CUMT (No. 13KF03)
文摘In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the National Natural Science Foundation of China
文摘Based on the tunnel shape, span and depth, the previous elliptical plate model and clamped beam model were modified.The modified model was applied to different situations. For the elliptical plate model, the water effects were considered. For the clamped beam model, water and horizontal stress were considered. Corresponding potential functions and cusp catastrophe models of rock system were established based on the catastrophe theory. The expressions of critical safety thickness were derived with necessary and sufficient conditions. The method was applied to the practical engineering. Some parameters related to the stability were discussed. The results show that elastic modulus and thickness are advantageous to the floor stability, and that the load, span,horizontal stress and water are disadvantageous to the floor stability.
基金Project(51378510)supported by National Natural Science Foundation of China。
文摘This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the dangerousness of this geological disaster.The losses that are caused by water and mud inrush are taken into consideration to account for its harmfulness.Then a risk evaluation model based on the dangerousness-harmfulness evaluation indicator system is constructed,which is more convincing in comparison with the traditional methods.The catastrophe theory is used to evaluate the risk level of water and mud inrush and it has great advantage in handling problems involving discontinuous catastrophe processes.To validate the proposed approach,the Qiyueshan tunnel of Yichang-Wanzhou Railway is taken as an example in which four target segments are evaluated using the risk evaluation model.Finally,the evaluation results are compared with the excavation data,which shows that the risk levels predicted by the proposed approach are in good agreements with that observed in engineering.In conclusion,the catastrophe theory-based risk evaluation model is an efficient and effective approach for water and mud inrush in karst tunnels.
基金provided by the National Natural Science Foundation of China (Nos.50574072, 50874089 and 50534049)the Special Scientific Foundation of the Shaanxi Department of Education (No.08JK366) is gratefully acknowledged
文摘Based on the engineering observations of coal and gas outbursts during mining processes and the experimental results,we built a thin plate mechanical model for layered and spalled coal bodies.We studied the mechanical mechanism of outbursts,due to instability,of thin plates of coal rocks under the action of in-plane load and normal load,by using the catastrophe theory.The total potential function is derived for the layered rock system,the cusp catastrophe model for the system is established,the bifurcation set that makes the system unstable is given,the process in which gradual change of action forces leads to catastrophic change of state is analyzed,and the effect of movement path of point(P,q) in the control space on the stability of rock plate is analyzed.The study results show that during the process of coal mining,the stability of the layered coal bodies depends not only on its physical properties and dimensions but also on the magnitudes and changing paths of the in-plane load and the normal load.When the gas in the coal bodies ahead of the mining face is pre-drained,the gas pressure can be reduced and the normal load q can be lowered.Consequently,disasters such as coal and gas outbursts can be effectively prevented.
文摘In order to detect fault exactly and quickly, cusp catastrophe theory is used to interpret 3D coal seismic data in this paper. By establishing a cusp model, seismic signal is transformed into standard form of cusp catastrophe and catastrophe parameters, including time-domain catastrophe potential, time-domain catastrophe time, frequency-domain catastrophe potential and frequency- domain degree, are calculated. Catastrophe theory is used in 3D seismic structural interpretation in coal mine. The results show that the position of abnormality of the catastrophe parameter profile or curve is related to the location of fault, and the cusp catastrophe theory is effective to automatically pick up geology information and improve the interpretation precision in 3D seismic data.
基金Project(50578060) supported by the National Natural Science Foundation of China
文摘According to the engineering features of higher pile-column bridge pier in mountainous area, a clamped beam mechanical model was set up by synthetically analyzing the higher pile-column bridge pier buckling mechanism. Based on the catastrophe theory, the cusp catastrophe model of higher pile-column bridge pier was established by the determination of its potential fimction and bifurcation set equation, the necessary instability conditions of high pile-column bridge pier were deduced, and the determination method for column-buckling and lateral displacement of high pile-column bridge pier was derived. The comparison between the experimental and calculated results show that the calculated curves agree with testing curves and the method is reasonable and effective.
文摘Generally, different prevention measures should be taken according to spontaneous combustion propensities. The current methods to evaluate the propensity of coal spontaneous combustion, such as chromatographic method of oxygen adsorption, oxidation kinetics method and activation energy method, are mostly affected by human factors. Their boundaries among different classes of propensities were all established by subjective judgments. A new evaluation method using catastrophe theory is introduced. This method can accurately depict the process of coal spontaneous combustion and the evaluation index, "catastrophe temperature", be obtained based on the model. In terms of catastrophe temperature, the spontaneous combustion propensity of different coals can be sequenced. Experimental data indicate that this method is appropriate to describe the spontaneous combustion process and to evaluate the propensity of coal svontaneous combustion.
文摘By means of CUSP model of catastrophe theory. this paper has studied thephysics process of rockburst occured on circular chamber. The present paper has nolonly described the instability process of rockburst more deeply. but also got the crilicaldepth of plastic softening area of chamber that is valuable in the controlling engineering of rockburst. the chamber displacement jump and energy liberation have been derived. the influence of rock parameters on the rockburst has been discussed .
基金The project was supported by National Natural Science Foundation of China.
文摘According to some local properties of Lorentz transformation, Einstein stated: 'Vetheitiss greater than that of light have no possibility of existence.' He neglected to point out the applicable range of the special theory of relativity. In fact, it could only be applied to the subluminal-speeds. This paper shows that if ones think of the possibility of the existence of the superluminal-speeds and redescribe the special theory of relativity following Einstein's way, it could be supposed that the physical spacetime is a Finsler spacetime, characterized by the metric ds4=gijkldxidxidxkdxl. If so, a new spactime transformation could be found by invariant ds4 and the theory of relativity is discussed on this transformation it is possible that the Finsler spacetime F(x,y) may be endowed with a catastrophic nature. Based on the different properties between the ds2 and ds4, it is discussed that the flat spacetime will also have the catastrophic nature on the Finsler metric ds4. The spacetime transformations and the Physical quantities will suddenly change at the catastrophe set of the spacetime, the light cone. It will be supposed that only the dual velocity of the superluminal-speeds could be observed. If so, a particle with the superluminal-speed v> c could be regarded as its anti-particle with the dual velocity v1=c2/ v< c. On the other hand, it could be assumed that the horizon of the field of the general relativity is also a catastrophic set. If so, a particle with the superluminal-speeds could be projected near the horizon of these fields, and the particle will move on the sauce-like curves. It is very interesting that, in the Schwarzschild fields, the theoretical calculation for the sauce-like curves should be in agreement with tie data of the superluminal expansion of extragalactic radio sources observed year after year. (see Gao, 1992b).The ca- tastrophe of spacetime has some deep cosmological means. According to the some interested subjects in the Process of evolution of the universe the catastrophe nature of the Finsler spacetime and its cosmological impli= cations are discussed. It is shown that the nature of the universal evolution could be attributed to the geometric features of the Finsler spacetime. (see Cao, 1993)
文摘The measurements by Huibin XU et al of the stress-dependence ot hysteresis in a NiTi shape memo ry alloy are modeled by catastrophe theory. The cusp catastrophe is used with the strain as the behaviour variable and the control parameters being functions of the stress and the temperature. A two constant model is found to be preferred to a four constant model.
基金Projects(2013BAB02B05,2012BAB08B01)supported by the National Science and Technology Support Program of ChinaProject(2013JSJJ029)supported by the Teacher Foundation of Central South University,ChinaProject(51074177)supported by the Joint Funding of National Natural Science Foundation and Shanghai Baosteel Group Corporation,China
文摘In order to study the failure mechanism of backfill and the reasonable matches between backfill and rock mass, and to achieve the object of safe and efficient mining in metal mine, four types of backfills were tested under uniaxial compression loading, with cement?tailing ratios of 0.250:1, 0.125:1, 0.100:1 and 0.083:1, respectively. With the help of the stress?strain curves, the deformation and failure characteristics of different backfills with differing cement?tailing ratios were analyzed. Based on the experimental results, the damage constitutive equations of cemented backfills with four cement?tailing ratios were proposed on the basis of damage mechanics. Moreover, comparative analysis of constitutive model and experimental results were made to verify the reliability of the damage model. In addition, an energy model using catastrophe theory to obtain the instability criteria of system was established to study the interaction between backfill and rock mass, and then the system instability criterion was deduced. The results show that there are different damage characteristics for different backfills, backfills with lower cement?tailing ratio tend to have a lower damage value when stress reaches peak value, and damage more rapidly and more obviously in failure process after peak value of stress; the stiffness and elastic modulus of rock mass with lower strength are more likely to lead to system instability. The results of this work provide a scientific basis for the rational strength design of backfill mine.
文摘According to the characteristics of the shock bump due to roof fall, a simple mechanics model has been established by applying the catastrophic theory and the law of energy conservation. The author suggests that the shock bump may be induced by the sudden energy release in the roof falling after underground mineral extractions, and through the systematic analysis of actual examples on site, the empirical formulae for the roof falling and energy release are derived, which would provide a new way for the study of the origin and mechanism of mine tremor due to fallen-in roof structure. It is of a great importance to enrich the shock bump theory and production safety in mine.
基金Supported by the Commission of Science Technology and Industry for National Defense (J1600B001)
文摘The goal of this paper is to research one new characteristic of complex system. Brittleness, which is one new characteritic of complex system, is presented in this paper. The linguistic and qualitative descriptions of complex system are also given in this paper. Otherwise, the qualitative description of complex system is presented at first. On the basis of analyzing the existing brittleness problems, linguistic description and mathematic description of brittleness are given as well. Three kinds of phenomena to judge brittleness of complex system are also given, based on catastrophe theory. Basic characteristics of brittleness are given on the basis of its mathematic description. Two critical point sets are defined by using catastrophe theory. The definition of brittleness and its related theory can serve the control of complex system, and provide theoretical basis for the design and control of complex system.
基金Project(2017zzts157)supported by the Innovation Foundation for Postgraduate of Central South University,China
文摘Limit analysis of the stability of geomechanical projects is one of the most difficult problems.This work investigates the influences of different parameters in NL failure strength on possible collapsing block shapes of single and twin shallow tunnels with considering the effects of surface settlement.Upper bound solutions derived by functional catastrophe theory are used for describing the distinct characteristics of falling blocks of different parts in twin tunnels.Furthermore the analytical solutions of minimum supporting pressures in shallow tunnels are obtained by the help of the variational principle.Lastly,the comparisons are made both in collapsed mechanism and stability factor with different methods.According to the numerical results in this work,the influences of different parameters on the size of collapsing block are presented in the tables and the limit supporting loads are illustrated in the form graphs that account for the surface settlement.
基金supported by the Major State Basic Research Development Program of China (No.2013CBA01803)the National Natural Science Foundation of China (No.41271084 and 41501079)+1 种基金the Project Funded by China Postdoctoral Science Foundation (No.2015M582724 and 2016T90962)the Chinese Academy of Sciences (CAS) Key Research Program (No.KZZD-EW-13)
文摘Engineering construction has major influence on the permafrost environment.This paper analyzes the interaction between engineering construction and permafrost environment along the Chaidaer-Muli Railway(simply,CMR) based on the press-state-response(PSR) framework.The permafrost environmental system is divided into three subsystems,consisting of permafrost thermal stability,proneness to the freeze-thawing erosion and permafrost ecological fragility.Each subsystem considers its most important influencing factors.Catastrophe Progression Method(CPM) is applied to calculate the current environment condition along the railway.The result indicates that:(1) as far as the thermal stability is concerned,most sections along the CMR are mainly concentrated in rank Ⅲ(fair situation),and a few in Ⅱ(good situation) and Ⅳ(bad situation),respectively;(2) for the proneness tothe freeze-thawing erosion,the entire railway route falls largely in rank Ⅱ(good situation);(3) along the CMR,the ecological fragility of the permafrost environment is in rank Ⅱ(good situation),or slightly fragile;(4) overall,the permafrost environments along the CMR are in rank Ⅲ(fair situation) or Ⅱcondition(good situation).In general,the permafrost environment along the CMR is fair.It is mainly because a series of active measures of protecting permafrost were taken for stabilizing the CMR foundation soils.On the one hand,we should try our best to minimize the influences that engineering activities have exerted on ecology and environment,on the other hand,the positive measures have made improvements to prevent the permafrost environment from deterioration.
文摘The propagation characteristics of the Pearcey–Gaussian(PG) beam in turbulent atmosphere are investigated in this paper.The Pearcey beam is a new kind of paraxial beam,based on the Pearcey function of catastrophe theory,which describes diffraction about a cusp caustic.By using the extended Huygens–Fresnel integral formula in the paraxial approximation and the Rytov theory,an analytical expression of axial intensity for the considered beam family is derived.Some numerical results for PG beam propagating in atmospheric turbulence are given by studying the influences of some factors,including incident beam parameters and turbulence strengths.
基金Supported by Natural Sciences Foundation of China(70973097)
文摘Since rural microfinance is a credit which grants loans without collateral and guarantees to farmers,it is considerably important to evaluate and control the household credit risk.Through establishing the evaluation index system and then using catastrophe progression theory,three common types of catastrophe system and the normalization formula,we get the comprehensive evaluation.Finally,we take the empirical test and the result shows that this method is simpler and more objective which can be used by the credit cooperatives to decide whether to authorize the loans.
文摘The goal of sustainoble development is to preserve sustainabitity trod simultaneously prevent catastrophe in a man-land .system. However, almost all the existing approaches to assessing sustainable development are to measure the sustainability. namely appraise from the obverse side of the sustainable development. So it seems necessary to attack the same task on the reverse, namely to measure the passibility of eatostrophe. In this paper, with a case study of Tianjin, China. we employ catastrophe theory and models to integrate Tianjin's sustainable development indicators, and then deduce the catastrophe risk index ( CRI) to present the level of catastrophic possibility in the city. Applying catastrophe theory, is a new strategy to assess sustainable development and shows great practical significance, especially for those developing regions or countries, who always give more priority to their economy and therefore have more obligation to make sure whether their social economic activities might bring forth any ecological environment catastrophe. Besides, being both qualitative and quantitative, the approach could be employed to explore not only static characteristics bat also dynamic mechanism of man-land system. Although our work is only a maiden attempt and still calls for further effort to improve it, the case study of Tianjin in this paper would assure as the great promising future to apply, catastrophe theory to sustoinable devetopment modeling,
文摘Catastrophe theory was applied to the investigation of nonlinear dynamic stability of composite laminated plates. The influence of large deflection, initial imperfection, support conditions and ply_angle of the fibers were considered. The catastrophic models and the critical conditions of dynamic buckling of composite laminated plates are obtained.
文摘To identify the potential groundwater bearing zones for future groundwater resources development of the study area, an investigation has been made using lithology, groundwater monitoring and elevation data. The stratigraphic cross-sections of the area reveal six distinct hydrostratigraphic features viz. clay-silt-sand, fine sand, fine to medium sand, medium sand, medium to coarse sand and coarse sand. On the basis of lithological information, the groundwater bearing zone of the area has been divided into two main hydrostratigraphic units viz. aquitard and aquifer, which consist of clay-silt-sand and sands of different grain sizes respectively. The aquifer zone is further divided into two categories: “small scale aquifer” made dominantly of fine and “main aquifer” comprising of fine-medium to coarse sand. The annual fluctuation of water table in the study area is observed from 4.9 m to 5.6 m. The area is demarcated as three different groundwater bearing zones based on Catastrophe theory using GIS.