The upstream water catchments are the main source providing sediments in rivers and sedimentary basins. The balance between the erosion phenomenon and the amount of sediment entering into the basin relies on the geome...The upstream water catchments are the main source providing sediments in rivers and sedimentary basins. The balance between the erosion phenomenon and the amount of sediment entering into the basin relies on the geometrical specifications and the morphology of the river along the water catchment direction and the amount and type of the sediments. The sedimentary feed of rivers and basins are changed for the sake of natural factors or human disturbances. The river and basin react against this change in that their shape, morphology, plan and profile get changed due to the increase or decrease of the input sediment into the basin. It is essential to know the sediment amount produced by erodability and sedimentation of upstream basins and effects of projects and also to evaluate the amount of sedimentary load in base studies, civil projects, optimizing rivers and dam construction studies specially calculating the amount of sediment amount entering into the dams’ reservoirs in order to take engineering decisions and related alternatives. Sediment Weight Model and PSIAC Experimental Model are recognized as two common methods calculating the amount of the produced sediment caused by erosion applied in this research. Holistically, these methods have been used and compared. Although the results are almost close to one another, more sediment load has been produced in PSIAC method. As more affective parameters are used to cause erosion and produce sediment in PSIAC experimental model, it is recommended to refer to the results of this method because they are closer to reality.展开更多
Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data...Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data are poorly gauged or ungauged. Since suspended sediment load (SSL) is predominant, the objectives of this research are to: 1) simulate monthly average SSL (SSLm) of four catchments using artificial neural network (ANN);2) assess the application of the calibrated ANN (Cal-ANN) models in three ungauged catchment representatives (UCR) before using them to predict SSLm of three actual ungauged catchments (AUC) in the Tonle Sap River Basin;and 3) estimate annual SSL (SSLA) of each AUC for the case of with and without dam-reservoirs. The model performance for total load (SSLT) prediction was also investigated because it is important for dam-reservoir management. For model simulation, ANN yielded very satisfactory results with determination coefficient (R2) ranging from 0.81 to 0.94 in calibration stage and 0.63 to 0.87 in validation stage. The Cal-ANN models also performed well in UCRs with R2 ranging from 0.59 to 0.64. From the result of this study, one can estimate SSLm and SSLT of ungauged catchments with an accuracy of 0.61 in term of R2 and 34.06% in term of absolute percentage bias, respectively. SSLA of the AUCs was found between 159,281 and 723,580 t/year. In combination with Brune’s method, the impact of dam-reservoirs could reduce SSLA between 47% and 68%. This result is key information for sustainable development of such infrastructures.展开更多
The examination of macroelements and natural radionuclides in the bottom sediments of small lakes and soils in the catchment areas of the Baikal region allows for the study of the mechanism of inflow and the source of...The examination of macroelements and natural radionuclides in the bottom sediments of small lakes and soils in the catchment areas of the Baikal region allows for the study of the mechanism of inflow and the source of these materials.On the basis of the results of rentgenostructural analysis lake sediments are divided into four types:terrigenous,carbonate, terrigenous-carbonate and organogenic.Through the analysis of gamma-ray spectrometry and ato-展开更多
In order to investigate sediment-loading processes in a catchment, the daily time series of river discharge and sediment load were applied to a semi-distributed model, the Soil and Water Assessment Tool (SWAT). The ti...In order to investigate sediment-loading processes in a catchment, the daily time series of river discharge and sediment load were applied to a semi-distributed model, the Soil and Water Assessment Tool (SWAT). The time series of discharge and sediment load were obtained by monitoring the river stage and water turbidity of the Oikamanai River, Hokkaido, Japan, in the rainfall season (April-November) of 2011-2014. The catchment is forested (ca 90% area) but underlain by the Neogene sedimentary rocks with currently active faults and forest soils with tephra layers, which tend to frequently produce slope failure such as landslide and bank collapse by rainfall or snowmelt. The water turbidity, T, in ppm was converted into suspended sediment concentration, SSC, in g/L by applying the linear relationship between T and SSC. The acquisition of the time series of discharge, Q (m<sup>3</sup>/s) and sediment load, L (=Q·SSC in g/s) of the river allowed us to distinguish the fluvial sediment transport, accompanied by slope failure in the upstream, from that under no slope failure. The SWAT was used to simulate soil erosion and identify the region prone to the soil erosion in the Oikamanai River basin. The model’s results showed a satisfactory agreement between daily observed and simulated sediment load as indicated by the high Nash-Sutcliffe efficiency. This evidences that the upper mountainous region of the catchment provides a main sediment source, accompanied by slope failure.展开更多
Soil erosion is a global phenomenon, which results in sedimentation and siltation of reservoirs of major rivers. Remote sensing data provide a synoptic view from which several surface parameters can be derived to asse...Soil erosion is a global phenomenon, which results in sedimentation and siltation of reservoirs of major rivers. Remote sensing data provide a synoptic view from which several surface parameters can be derived to assess the sedimentation yield in the reservoirs. Hence estimation of sediment yield has become one of the important tasks for planners, engineers and decision makers. The present study in Govindsagar catchment, Lalitpur District, Uttar Pradesh (India), has been carried out using IRS LISS III data to analyse land use/cover characteristics besides drainage basin characterstics. Subsequently, Sediment Yield Index (SYI) of Govindsagar catchment has been estimated using surface derivatives and morphometric parameters using empirical formulae. Integration of results obtained from satellite data and morphometric analysis suggests that the Govindsagar catchment has very low rate of sediment yield i.e. 0.07 ha·m/year indicating a gentle slope and sustainable land use practices in the catchment. Low sediment yield also suggests less erosion in the catchment areas and healthy land use/cover scenario.展开更多
The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment i...The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment is determined determined on the concept of net increase of sediment yield by using analytical method of sediment formation at different positions in the catchment The result shows that sediments in a small catchment in the middle reaches of the Yellow River mainly come from slopes. ms paper indicated that the sediment sources from slopes are roughly 55, 60, 78 and 85 % of the total sediment yield of a small catchment in Yangdaogou. Wangjiagou. Jiuyuangou and Nanxiaohegou, respectively, due to impacts of varying degress from slope runoff.展开更多
文摘The upstream water catchments are the main source providing sediments in rivers and sedimentary basins. The balance between the erosion phenomenon and the amount of sediment entering into the basin relies on the geometrical specifications and the morphology of the river along the water catchment direction and the amount and type of the sediments. The sedimentary feed of rivers and basins are changed for the sake of natural factors or human disturbances. The river and basin react against this change in that their shape, morphology, plan and profile get changed due to the increase or decrease of the input sediment into the basin. It is essential to know the sediment amount produced by erodability and sedimentation of upstream basins and effects of projects and also to evaluate the amount of sedimentary load in base studies, civil projects, optimizing rivers and dam construction studies specially calculating the amount of sediment amount entering into the dams’ reservoirs in order to take engineering decisions and related alternatives. Sediment Weight Model and PSIAC Experimental Model are recognized as two common methods calculating the amount of the produced sediment caused by erosion applied in this research. Holistically, these methods have been used and compared. Although the results are almost close to one another, more sediment load has been produced in PSIAC method. As more affective parameters are used to cause erosion and produce sediment in PSIAC experimental model, it is recommended to refer to the results of this method because they are closer to reality.
文摘Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed in many river basins around the world especially in developing and remote regions where sediment data are poorly gauged or ungauged. Since suspended sediment load (SSL) is predominant, the objectives of this research are to: 1) simulate monthly average SSL (SSLm) of four catchments using artificial neural network (ANN);2) assess the application of the calibrated ANN (Cal-ANN) models in three ungauged catchment representatives (UCR) before using them to predict SSLm of three actual ungauged catchments (AUC) in the Tonle Sap River Basin;and 3) estimate annual SSL (SSLA) of each AUC for the case of with and without dam-reservoirs. The model performance for total load (SSLT) prediction was also investigated because it is important for dam-reservoir management. For model simulation, ANN yielded very satisfactory results with determination coefficient (R2) ranging from 0.81 to 0.94 in calibration stage and 0.63 to 0.87 in validation stage. The Cal-ANN models also performed well in UCRs with R2 ranging from 0.59 to 0.64. From the result of this study, one can estimate SSLm and SSLT of ungauged catchments with an accuracy of 0.61 in term of R2 and 34.06% in term of absolute percentage bias, respectively. SSLA of the AUCs was found between 159,281 and 723,580 t/year. In combination with Brune’s method, the impact of dam-reservoirs could reduce SSLA between 47% and 68%. This result is key information for sustainable development of such infrastructures.
文摘The examination of macroelements and natural radionuclides in the bottom sediments of small lakes and soils in the catchment areas of the Baikal region allows for the study of the mechanism of inflow and the source of these materials.On the basis of the results of rentgenostructural analysis lake sediments are divided into four types:terrigenous,carbonate, terrigenous-carbonate and organogenic.Through the analysis of gamma-ray spectrometry and ato-
文摘In order to investigate sediment-loading processes in a catchment, the daily time series of river discharge and sediment load were applied to a semi-distributed model, the Soil and Water Assessment Tool (SWAT). The time series of discharge and sediment load were obtained by monitoring the river stage and water turbidity of the Oikamanai River, Hokkaido, Japan, in the rainfall season (April-November) of 2011-2014. The catchment is forested (ca 90% area) but underlain by the Neogene sedimentary rocks with currently active faults and forest soils with tephra layers, which tend to frequently produce slope failure such as landslide and bank collapse by rainfall or snowmelt. The water turbidity, T, in ppm was converted into suspended sediment concentration, SSC, in g/L by applying the linear relationship between T and SSC. The acquisition of the time series of discharge, Q (m<sup>3</sup>/s) and sediment load, L (=Q·SSC in g/s) of the river allowed us to distinguish the fluvial sediment transport, accompanied by slope failure in the upstream, from that under no slope failure. The SWAT was used to simulate soil erosion and identify the region prone to the soil erosion in the Oikamanai River basin. The model’s results showed a satisfactory agreement between daily observed and simulated sediment load as indicated by the high Nash-Sutcliffe efficiency. This evidences that the upper mountainous region of the catchment provides a main sediment source, accompanied by slope failure.
文摘Soil erosion is a global phenomenon, which results in sedimentation and siltation of reservoirs of major rivers. Remote sensing data provide a synoptic view from which several surface parameters can be derived to assess the sedimentation yield in the reservoirs. Hence estimation of sediment yield has become one of the important tasks for planners, engineers and decision makers. The present study in Govindsagar catchment, Lalitpur District, Uttar Pradesh (India), has been carried out using IRS LISS III data to analyse land use/cover characteristics besides drainage basin characterstics. Subsequently, Sediment Yield Index (SYI) of Govindsagar catchment has been estimated using surface derivatives and morphometric parameters using empirical formulae. Integration of results obtained from satellite data and morphometric analysis suggests that the Govindsagar catchment has very low rate of sediment yield i.e. 0.07 ha·m/year indicating a gentle slope and sustainable land use practices in the catchment. Low sediment yield also suggests less erosion in the catchment areas and healthy land use/cover scenario.
文摘The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment is determined determined on the concept of net increase of sediment yield by using analytical method of sediment formation at different positions in the catchment The result shows that sediments in a small catchment in the middle reaches of the Yellow River mainly come from slopes. ms paper indicated that the sediment sources from slopes are roughly 55, 60, 78 and 85 % of the total sediment yield of a small catchment in Yangdaogou. Wangjiagou. Jiuyuangou and Nanxiaohegou, respectively, due to impacts of varying degress from slope runoff.