Density functional theory (DFT) at B3LYP/6-31G(d,p) level was employed to calculate intramolecular hydrogen bond enthalpies (HIHB), O-H charge differences, O-H bond lengths and bond orders for various substituted cate...Density functional theory (DFT) at B3LYP/6-31G(d,p) level was employed to calculate intramolecular hydrogen bond enthalpies (HIHB), O-H charge differences, O-H bond lengths and bond orders for various substituted catechols and their radicals generated after H-abstraction. It was found that although the charge difference between hydrogen-bonded H and O played a role in determining HIHB, HIHB was mainly governed by the hydrogen bond length. As the oxygen-centered radical has great tendency to form a chemical bond with the H atom, hydrogen bond lengths in catecholic radicals are systematically shorter than those in catechols. Hence, the HIHB for the former are higher than those for the latter.展开更多
It was found that the oxovanadium(V) complex of triethanolamine (TEA) exhibits catalytic activity to the oxidative cleavage of catechols. On the other hand. the vanadyl nitrilotriacetic acid (NTA) complex is inactiv...It was found that the oxovanadium(V) complex of triethanolamine (TEA) exhibits catalytic activity to the oxidative cleavage of catechols. On the other hand. the vanadyl nitrilotriacetic acid (NTA) complex is inactive. but leads to the formation of stable ternary complex. The main products of the catalytic oxidative cleavage of 3.5-di-tert-butylcatechol were separated and characterized. Based on the results. a reaction mechanism was discussed展开更多
In the study, hair colouring by utilising enzymatic oxidation of nine species of bio-catechols, which are biobased materials having the catechol (o-dihydroxybenzene) group, was examined. The bio-catechols used are (+)...In the study, hair colouring by utilising enzymatic oxidation of nine species of bio-catechols, which are biobased materials having the catechol (o-dihydroxybenzene) group, was examined. The bio-catechols used are (+)-catechin (Cat), (-)-epicatechin (EC), L-3,4-dihydroxyphenylalanine (DOPA), hematoxylin (HX), brazilin (BZ), rosmarinic acid (RA), caffeic acid (CA), chlorogenic acid (ChA) or ellagic acid (EA). The dyeability of human white hair samples dyed by two kinds of dyeing methods using the bio-catechols was compared. First one is dyeing hair during the enzymatic oxidation of a bio-catechol dye precursor in a dye solution (simultaneous oxidation dyeing method). Second one is dyeing hair by oxidising enzymatically the precursor on hair, which is pre-treated with a bio-catechol solution (post-oxidation dyeing method). The results show that the bio-catechols except EA are oxidised to give colourants and Cat, EC, DOPA, HX and BZ are available for hair dyeing. Overall, the dyeability of simultaneous oxidation dyeing method is higher than that of post-oxidation one. The colour of the hair dyed by simultaneous method is yellowish brown for Cat or EC, grey for DOPA, dark yellowish brown for HX or reddish brown for BZ, respectively. The most vivid or deepest colour of dyed hair is obtained by dyeing with Cat or HX, respectively, in the simultaneous technique. It was found that the bio-catechols having chroman (3, 4-dihydro-2H-1-benzopyran) structure in the molecule such as Cat, EC, HX and BZ are useful for hair colouring.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 30100035).
文摘Density functional theory (DFT) at B3LYP/6-31G(d,p) level was employed to calculate intramolecular hydrogen bond enthalpies (HIHB), O-H charge differences, O-H bond lengths and bond orders for various substituted catechols and their radicals generated after H-abstraction. It was found that although the charge difference between hydrogen-bonded H and O played a role in determining HIHB, HIHB was mainly governed by the hydrogen bond length. As the oxygen-centered radical has great tendency to form a chemical bond with the H atom, hydrogen bond lengths in catecholic radicals are systematically shorter than those in catechols. Hence, the HIHB for the former are higher than those for the latter.
文摘It was found that the oxovanadium(V) complex of triethanolamine (TEA) exhibits catalytic activity to the oxidative cleavage of catechols. On the other hand. the vanadyl nitrilotriacetic acid (NTA) complex is inactive. but leads to the formation of stable ternary complex. The main products of the catalytic oxidative cleavage of 3.5-di-tert-butylcatechol were separated and characterized. Based on the results. a reaction mechanism was discussed
文摘In the study, hair colouring by utilising enzymatic oxidation of nine species of bio-catechols, which are biobased materials having the catechol (o-dihydroxybenzene) group, was examined. The bio-catechols used are (+)-catechin (Cat), (-)-epicatechin (EC), L-3,4-dihydroxyphenylalanine (DOPA), hematoxylin (HX), brazilin (BZ), rosmarinic acid (RA), caffeic acid (CA), chlorogenic acid (ChA) or ellagic acid (EA). The dyeability of human white hair samples dyed by two kinds of dyeing methods using the bio-catechols was compared. First one is dyeing hair during the enzymatic oxidation of a bio-catechol dye precursor in a dye solution (simultaneous oxidation dyeing method). Second one is dyeing hair by oxidising enzymatically the precursor on hair, which is pre-treated with a bio-catechol solution (post-oxidation dyeing method). The results show that the bio-catechols except EA are oxidised to give colourants and Cat, EC, DOPA, HX and BZ are available for hair dyeing. Overall, the dyeability of simultaneous oxidation dyeing method is higher than that of post-oxidation one. The colour of the hair dyed by simultaneous method is yellowish brown for Cat or EC, grey for DOPA, dark yellowish brown for HX or reddish brown for BZ, respectively. The most vivid or deepest colour of dyed hair is obtained by dyeing with Cat or HX, respectively, in the simultaneous technique. It was found that the bio-catechols having chroman (3, 4-dihydro-2H-1-benzopyran) structure in the molecule such as Cat, EC, HX and BZ are useful for hair colouring.