Areca catechu L.(Palmae), commonly known as an important economical seed crop, is widely culti- vated in tropical and subtropical areas, including India, Southeast Asia, East Africa and New Guinea. Areca nut(freque...Areca catechu L.(Palmae), commonly known as an important economical seed crop, is widely culti- vated in tropical and subtropical areas, including India, Southeast Asia, East Africa and New Guinea. Areca nut(frequently known as betel nut) is the ripe fruit of the tree A. catechu. Areca nut can be chewed and it is a common masticatory in tropical and subtropical countries. It was estimated in the early 1990s that 10% to 20% of the world's population chewed betel quid daily. Areca nut is commonly used in folklore medicine for treatment of various diseases such as dyspep sia, constipation, beriberi and oedema.展开更多
We reported that Catechu extract has a significant inhibitory effect on cathepsin B activity. The IC50 value for the Catechu extract against cathepsin B was 7.6 μg/mL. In addition, we showed that HT1080 human fibrosa...We reported that Catechu extract has a significant inhibitory effect on cathepsin B activity. The IC50 value for the Catechu extract against cathepsin B was 7.6 μg/mL. In addition, we showed that HT1080 human fibrosarcoma cells express cathepsin B and Catechu modulate the invasion and motility of these cells. These data may provide molecular mechanisms for the therapeutic effects of Catechu.展开更多
Betel nut is the dry and mature seed of Areca catechu L.,which is originated in Malaysia and cultivated in Yunnan,Hainan and Taiwan and other tropical areas of China.It is also known as big belly,binmen,olive seed,gre...Betel nut is the dry and mature seed of Areca catechu L.,which is originated in Malaysia and cultivated in Yunnan,Hainan and Taiwan and other tropical areas of China.It is also known as big belly,binmen,olive seed,green seed and so on.Betel nut is a dual-use resource for medicine and food,which was first contained in LI Dang′s Pharmaceutical Record.Betel nut tastes bitter,pungent,warm in nature,and belongs to the stomach and large intestine meridian.It contains a variety of chemical components such as alkaloids,phenolic compounds,polysaccharides,fatty acids,amino acids, flavonoids, minerals, terpenoids, and steroids. It has the advantages of promoting digestion, lowering blood pres sure, anti-depression, anti-oxidation, anti-inflammatory, and anti-parasites, antibacterial and other activities. The content of total phenols in fresh fruits of areca nut was 31.1%, mainly including catechin, isorhamnetin, chrysopanthoxanthin, luteolin, tannin and other polyphenols. The commonly used methods for determination of polyphenols in areca are vanil lin titration potassium permanganate titration and potassium ferricyanide spectrophotometry. The main activities and mechanisms of areca polyphenols include: ① Antidepressant effect: polyphenols bind to monoamine oxidase type A (MAO-A) receptors that inhibit the production of neurotransmitters, thereby increasing the content of amine transmitters in the brain and playing a therapeutic effect on depression. ② Antioxidant effect: polyphenols contain multiple adjacent hydroxyl groups, which are easily oxidized and can effectively remove superoxide anion free radical, hydroxyl free radi cal, 1,1-diphenyl-2-picrylhydrazyl radical, showing good antioxidant activity. ③ Bacteriostatic effect: polyphenols can spe cifically bind to the surface of bacteria, thus achieving bacteriostatic effect. Studies have found that betel nut polyphenols have varying degrees of inhibitory effects on a variety of bacteria. ④ Inducing apoptosis of lymphocytes: polyphenols deplete the mercaptan in lymphocytes and make them unable to survive, thus inducing apoptosis of lymphocytes. ⑤ Anti-aging effect: polyphenols have the effect of anti-hyaluronidase and anti-elastase, so as to protect elastin fiber and pro mote collagen synthesis. ⑥ Anti-allergic effect: studies have found that polyphenols can reduce ovalbumin induced aller gic reactions. ⑦ Other functions: betel nut can freshen breath, eliminate bad breath, and resist the activity of cobra venom. At present, domestic and foreign scholars′ research on betel nut mainly focuses on arecoline and its carcinogenicity, mutagenicity, effects on reproductive function, addiction and toxicity to the nervous system, and there are few studies on the positive effects of betel nut, especially on it. There is less research on phenolic ingredients. Therefore, this article reviews the polyphenolic chemical constituents of betel nut, and fully excavates its pharmacological activity to provide a reasonable basis for the scientific use of betel nut.展开更多
The annual dynamic changes of nutrient content in soil and leaves of adult Areca catechu trees in the A.catechu producing area Tunchang were studied by fixed point observation method to provide the scientific basis fo...The annual dynamic changes of nutrient content in soil and leaves of adult Areca catechu trees in the A.catechu producing area Tunchang were studied by fixed point observation method to provide the scientific basis for the rational fertilization of A.catechu.The results showed that the soil of the A.catechu plantation was weakly acidic on the whole,and soil pH was 5.53.Soil phosphorus content was extremely low,only 5.46 mg/kg.Nitrogen content in A.catechu leaves was the highest( up to 20.24 g/kg),while phosphorus content was the lowest( only 0.31 g/kg).The differences in nutrient content were related to the characteristics of nutrient demand.There was a difference in nutrient content of A.catechu leaves during the annual growth period.Because the maximum nutrient requirement period of A.catechu trees was from April to September,the important fertilization period of A.catechu trees was also from April to September.展开更多
Biodegradable reinforced composites are playing a vital role in the variety of application for their outstanding performance. Linear Low Density Polyethylene (LLDPE) and Polyethylene Tere-phthalate (PET) blends were p...Biodegradable reinforced composites are playing a vital role in the variety of application for their outstanding performance. Linear Low Density Polyethylene (LLDPE) and Polyethylene Tere-phthalate (PET) blends were prepared by twin screw extruder in different composition. The mechanical properties in 10% PET with LLDPE blend showed the best results where as tensile strength (TS) 9 MPa and percentage elongation at break (%Eb) 33. Cellulose based reinforced PET + LLDPE composite were prepared by compression molding with the optimized jute content 62% that revealed the highest mechanical properties. Cellulose based composites treated with Acacia catechu (AC) solutions (0.1% - 5% w/v) at different soaking time (2 - 20 min.) where observed significant improvement of the mechanical properties. Cellulose treated with 0.1% AC for 2 minutes soaking time depicted the highest mechanical properties and TS is 115% higher than untreated. Composite prepared with 0.1% AC treated showed the best mechanical properties as tensile strength (TS), bending strength (BS), tensile modulus (TM) and bending modulus (BM) were to be 47 MPa, 39 MPa, 1220 MPa and 1784 MPa respectively. The properties of TS, BS, TM and BM were improved as 9%, 30%, 14% and 34% respectively, which were better to untreated composite. Electrical properties such as dielectric constant and loss of the treated and untreated composites were found to be higher dielectric constant of treated jute composite than that of untreated samples. Water uptake and soil degradation of untreated and treated composites performed in significant study. The effect of AC with cellulose composites has found in remarkable changes in the mechanical properties.展开更多
From the aqueous extract of Acacia catechu,two new phenolic compounds(3R,4R)-3-(3,4-dihydroxyphenyl)-4-hydroxycy-clohexanone (1) and(4R)-5-(1-(3,4-dihydrophenyl)-3-oxobutyl)-dihydrofuran-2(3H)-one(2) w...From the aqueous extract of Acacia catechu,two new phenolic compounds(3R,4R)-3-(3,4-dihydroxyphenyl)-4-hydroxycy-clohexanone (1) and(4R)-5-(1-(3,4-dihydrophenyl)-3-oxobutyl)-dihydrofuran-2(3H)-one(2) were obtained.Their structures were determined on the basis of spectroscopic analysis.Free-radical scavenging activities of them were evaluated.展开更多
OBJECTIVE:To investigate the effect of black catechu(BC) on the pharmacokinetics of theophylline(CYP1A2 substrate,with narrow therapeutic index)in rabbits.METHODS:In the present investigation the effect of BC on the p...OBJECTIVE:To investigate the effect of black catechu(BC) on the pharmacokinetics of theophylline(CYP1A2 substrate,with narrow therapeutic index)in rabbits.METHODS:In the present investigation the effect of BC on the pharmacokinetics of theophylline,a CYP1A2 substrate was determined.In the study,BC(264 mg/kg,p.o.) or saline(control group) was given to rabbits for 7 consecutive days and on the 8^(th)day theophylline(16 mg/kg) was administered orally one hour after BC or saline treatment.Blood samples were withdrawn at different time intervals(0.5,1,1.5,2,3,4,6,8,12,24 and 36 h) from the marginal ear vein.RESULTS:The pretreatment of rabbits with BC resulted in a significant increase in maximum blood concentration,time of peak concentration and area under the concentration time profile curve until last observation which was about 41.32%,35.71%and 15.03%,respectively.While decreases in clearance,volume of distribution,and half-life were observed.It is suggested that BC pretreatment decreases the CYP1 A metabolic activity leading to increase in bioavailability and decrease in oral clearance of theophylline,which may be due to inhibition of CYP1 A.CONCLUSION:BC can significantly alter theophylline pharmacokinetics in vivo possibly due to inhibition of CYP1 A and P-glycoprotein activity.Based on these results,precaution should be exercised when administering BC with CYP1 A substrate.展开更多
基金Supported by the National Programs for Science and Technology Development of China(No.2007B127B04)
文摘Areca catechu L.(Palmae), commonly known as an important economical seed crop, is widely culti- vated in tropical and subtropical areas, including India, Southeast Asia, East Africa and New Guinea. Areca nut(frequently known as betel nut) is the ripe fruit of the tree A. catechu. Areca nut can be chewed and it is a common masticatory in tropical and subtropical countries. It was estimated in the early 1990s that 10% to 20% of the world's population chewed betel quid daily. Areca nut is commonly used in folklore medicine for treatment of various diseases such as dyspep sia, constipation, beriberi and oedema.
基金Supported by the Program for New Century Excellent Talents from the Ministry of Education of China(No.NCET-08-0244)the Science and Technology Support Program of Jilin Province China(No.20090929)
文摘We reported that Catechu extract has a significant inhibitory effect on cathepsin B activity. The IC50 value for the Catechu extract against cathepsin B was 7.6 μg/mL. In addition, we showed that HT1080 human fibrosarcoma cells express cathepsin B and Catechu modulate the invasion and motility of these cells. These data may provide molecular mechanisms for the therapeutic effects of Catechu.
基金Fund of Dean of Huachuang Institute of Areca Research-Hainan(HCBL2020YZ-012)。
文摘Betel nut is the dry and mature seed of Areca catechu L.,which is originated in Malaysia and cultivated in Yunnan,Hainan and Taiwan and other tropical areas of China.It is also known as big belly,binmen,olive seed,green seed and so on.Betel nut is a dual-use resource for medicine and food,which was first contained in LI Dang′s Pharmaceutical Record.Betel nut tastes bitter,pungent,warm in nature,and belongs to the stomach and large intestine meridian.It contains a variety of chemical components such as alkaloids,phenolic compounds,polysaccharides,fatty acids,amino acids, flavonoids, minerals, terpenoids, and steroids. It has the advantages of promoting digestion, lowering blood pres sure, anti-depression, anti-oxidation, anti-inflammatory, and anti-parasites, antibacterial and other activities. The content of total phenols in fresh fruits of areca nut was 31.1%, mainly including catechin, isorhamnetin, chrysopanthoxanthin, luteolin, tannin and other polyphenols. The commonly used methods for determination of polyphenols in areca are vanil lin titration potassium permanganate titration and potassium ferricyanide spectrophotometry. The main activities and mechanisms of areca polyphenols include: ① Antidepressant effect: polyphenols bind to monoamine oxidase type A (MAO-A) receptors that inhibit the production of neurotransmitters, thereby increasing the content of amine transmitters in the brain and playing a therapeutic effect on depression. ② Antioxidant effect: polyphenols contain multiple adjacent hydroxyl groups, which are easily oxidized and can effectively remove superoxide anion free radical, hydroxyl free radi cal, 1,1-diphenyl-2-picrylhydrazyl radical, showing good antioxidant activity. ③ Bacteriostatic effect: polyphenols can spe cifically bind to the surface of bacteria, thus achieving bacteriostatic effect. Studies have found that betel nut polyphenols have varying degrees of inhibitory effects on a variety of bacteria. ④ Inducing apoptosis of lymphocytes: polyphenols deplete the mercaptan in lymphocytes and make them unable to survive, thus inducing apoptosis of lymphocytes. ⑤ Anti-aging effect: polyphenols have the effect of anti-hyaluronidase and anti-elastase, so as to protect elastin fiber and pro mote collagen synthesis. ⑥ Anti-allergic effect: studies have found that polyphenols can reduce ovalbumin induced aller gic reactions. ⑦ Other functions: betel nut can freshen breath, eliminate bad breath, and resist the activity of cobra venom. At present, domestic and foreign scholars′ research on betel nut mainly focuses on arecoline and its carcinogenicity, mutagenicity, effects on reproductive function, addiction and toxicity to the nervous system, and there are few studies on the positive effects of betel nut, especially on it. There is less research on phenolic ingredients. Therefore, this article reviews the polyphenolic chemical constituents of betel nut, and fully excavates its pharmacological activity to provide a reasonable basis for the scientific use of betel nut.
基金Supported by National Nonprofit Institute Research Grant of CATAS-TCGRI(1630032016015)Natural Science Foundation of Hainan Province(317264)
文摘The annual dynamic changes of nutrient content in soil and leaves of adult Areca catechu trees in the A.catechu producing area Tunchang were studied by fixed point observation method to provide the scientific basis for the rational fertilization of A.catechu.The results showed that the soil of the A.catechu plantation was weakly acidic on the whole,and soil pH was 5.53.Soil phosphorus content was extremely low,only 5.46 mg/kg.Nitrogen content in A.catechu leaves was the highest( up to 20.24 g/kg),while phosphorus content was the lowest( only 0.31 g/kg).The differences in nutrient content were related to the characteristics of nutrient demand.There was a difference in nutrient content of A.catechu leaves during the annual growth period.Because the maximum nutrient requirement period of A.catechu trees was from April to September,the important fertilization period of A.catechu trees was also from April to September.
文摘Biodegradable reinforced composites are playing a vital role in the variety of application for their outstanding performance. Linear Low Density Polyethylene (LLDPE) and Polyethylene Tere-phthalate (PET) blends were prepared by twin screw extruder in different composition. The mechanical properties in 10% PET with LLDPE blend showed the best results where as tensile strength (TS) 9 MPa and percentage elongation at break (%Eb) 33. Cellulose based reinforced PET + LLDPE composite were prepared by compression molding with the optimized jute content 62% that revealed the highest mechanical properties. Cellulose based composites treated with Acacia catechu (AC) solutions (0.1% - 5% w/v) at different soaking time (2 - 20 min.) where observed significant improvement of the mechanical properties. Cellulose treated with 0.1% AC for 2 minutes soaking time depicted the highest mechanical properties and TS is 115% higher than untreated. Composite prepared with 0.1% AC treated showed the best mechanical properties as tensile strength (TS), bending strength (BS), tensile modulus (TM) and bending modulus (BM) were to be 47 MPa, 39 MPa, 1220 MPa and 1784 MPa respectively. The properties of TS, BS, TM and BM were improved as 9%, 30%, 14% and 34% respectively, which were better to untreated composite. Electrical properties such as dielectric constant and loss of the treated and untreated composites were found to be higher dielectric constant of treated jute composite than that of untreated samples. Water uptake and soil degradation of untreated and treated composites performed in significant study. The effect of AC with cellulose composites has found in remarkable changes in the mechanical properties.
基金supported by the National Science and Technology Project of China(No2009zx09301-003-4-1)and the Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine,Peking Union Medical College,Ministry of Education
文摘From the aqueous extract of Acacia catechu,two new phenolic compounds(3R,4R)-3-(3,4-dihydroxyphenyl)-4-hydroxycy-clohexanone (1) and(4R)-5-(1-(3,4-dihydrophenyl)-3-oxobutyl)-dihydrofuran-2(3H)-one(2) were obtained.Their structures were determined on the basis of spectroscopic analysis.Free-radical scavenging activities of them were evaluated.
基金the Deanship of Scientific Research at King Saud University for funding this research group,No. RG-1435-041
文摘OBJECTIVE:To investigate the effect of black catechu(BC) on the pharmacokinetics of theophylline(CYP1A2 substrate,with narrow therapeutic index)in rabbits.METHODS:In the present investigation the effect of BC on the pharmacokinetics of theophylline,a CYP1A2 substrate was determined.In the study,BC(264 mg/kg,p.o.) or saline(control group) was given to rabbits for 7 consecutive days and on the 8^(th)day theophylline(16 mg/kg) was administered orally one hour after BC or saline treatment.Blood samples were withdrawn at different time intervals(0.5,1,1.5,2,3,4,6,8,12,24 and 36 h) from the marginal ear vein.RESULTS:The pretreatment of rabbits with BC resulted in a significant increase in maximum blood concentration,time of peak concentration and area under the concentration time profile curve until last observation which was about 41.32%,35.71%and 15.03%,respectively.While decreases in clearance,volume of distribution,and half-life were observed.It is suggested that BC pretreatment decreases the CYP1 A metabolic activity leading to increase in bioavailability and decrease in oral clearance of theophylline,which may be due to inhibition of CYP1 A.CONCLUSION:BC can significantly alter theophylline pharmacokinetics in vivo possibly due to inhibition of CYP1 A and P-glycoprotein activity.Based on these results,precaution should be exercised when administering BC with CYP1 A substrate.