期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于合成数据集的多目标识别与6-DoF位姿估计
1
作者 胡广华 欧美彤 李振东 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期42-50,共9页
多目标识别及六自由度(6-DoF)位姿估计是实现物料无序堆放状态下机器人自动分拣的关键。近年来,基于深度神经网络的方法在目标识别及位姿估计领域受到广泛关注,但此类方法依赖大量训练样本,而样本的采集及标注费时费力,限制了其实用性... 多目标识别及六自由度(6-DoF)位姿估计是实现物料无序堆放状态下机器人自动分拣的关键。近年来,基于深度神经网络的方法在目标识别及位姿估计领域受到广泛关注,但此类方法依赖大量训练样本,而样本的采集及标注费时费力,限制了其实用性。其次,当成像条件差、目标相互遮挡时,现有位姿估计方法无法保证结果的可靠性,进而导致抓取失败。为此,文中提出了一种基于合成数据样本的目标识别、分割及位姿估计方法。首先,以目标对象的3维(3D)几何模型为基础,利用3D图形编程工具生成虚拟场景的多视角RGB-D合成图像,并对生成的RGB图像及深度图像分别进行风格迁移和噪声增强,从而提高合成数据的真实感,以适应真实场景的检测需要;接着,利用合成数据集训练YOLOv7-mask实例分割模型,运用真实数据进行测试,结果验证了该方法的有效性;然后,以分割结果为基础,基于ES6D目标位姿估计模型,提出了一种在线姿态评估方法,以自动滤除严重失真的估计结果;最后,采用基于主动视觉的位姿估计校正策略,引导机械臂运动到新的视角重新检测,以解决因遮挡而导致位姿估计偏差的问题。在自行搭建的6自由度工业机器人视觉分拣系统上进行了实验,结果表明,文中提出的方法能较好地适应复杂环境下工件的识别与6-DoF姿态估计要求。 展开更多
关键词 目标识别 位置测量 6-doF位姿估计 机器人自动分拣 RGB-d图像
下载PDF
6DOF pose estimation of a 3D rigid object based on edge-enhanced point pair features
2
作者 Chenyi Liu Fei Chen +5 位作者 Lu Deng Renjiao Yi Lintao Zheng Chenyang Zhu Jia Wang Kai Xu 《Computational Visual Media》 SCIE EI CSCD 2024年第1期61-77,共17页
The point pair feature(PPF)is widely used for 6D pose estimation.In this paper,we propose an efficient 6D pose estimation method based on the PPF framework.We introduce a well-targeted down-sampling strategy that focu... The point pair feature(PPF)is widely used for 6D pose estimation.In this paper,we propose an efficient 6D pose estimation method based on the PPF framework.We introduce a well-targeted down-sampling strategy that focuses on edge areas for efficient feature extraction for complex geometry.A pose hypothesis validation approach is proposed to resolve ambiguity due to symmetry by calculating the edge matching degree.We perform evaluations on two challenging datasets and one real-world collected dataset,demonstrating the superiority of our method for pose estimation for geometrically complex,occluded,symmetrical objects.We further validate our method by applying it to simulated punctures. 展开更多
关键词 point pair feature(PPF) pose estimation object recognition 3d point cloud
原文传递
DMANet:针对空间非合作目标位姿估计的密集多尺度注意力网络
3
作者 张钊 胡瑀晖 +3 位作者 周栋 吴立刚 姚蔚然 李鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第1期122-134,共13页
利用单目相机对空间非合作目标进行准确的姿态估计对于空间碎片清除、自主交会和其他在轨服务至关重要。然而,单目姿态估计方法缺乏深度信息,导致尺度不确定性问题,大大降低了其精度和实时性。本文首先提出了一种多尺度注意块(Multi-sca... 利用单目相机对空间非合作目标进行准确的姿态估计对于空间碎片清除、自主交会和其他在轨服务至关重要。然而,单目姿态估计方法缺乏深度信息,导致尺度不确定性问题,大大降低了其精度和实时性。本文首先提出了一种多尺度注意块(Multi-scale attention block, MAB),从输入图像中提取复杂的高维语义特征。其次,基于MAB模块,提出了空间非合作目标6自由度位姿估计的密集多尺度注意网络(Dense multi-scale attention network, DMANet),该网络由平面位置估计、深度位置估计和姿态估计3个分支组成,通过引入基于欧拉角的软分类方法,将位姿回归问题表述为经典分类问题。此外,设计了空间非合作目标模型,并利用Coppeliasim构建了姿态估计数据集。最后,与其他最先进的方法相比,在SPEED+、URSO数据集和本文数据集上全面评估了所提出的方法。实验结果表明,该方法具有较好的姿态估计精度。 展开更多
关键词 六自由度位姿估计 空间非合作目标 多尺度注意力机制 深度学习 神经网络
下载PDF
6D pose annotation and pose estimation method for weak-corner objects under low-light conditions
4
作者 JIANG ZhiHong CHEN JinHong +2 位作者 JING YaMan HUANG Xiao LI Hui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第3期630-640,共11页
In unstructured environments such as disaster sites and mine tunnels,it is a challenge for robots to estimate the poses of objects under complex lighting backgrounds,which limit their operation.Owing to the shadows pr... In unstructured environments such as disaster sites and mine tunnels,it is a challenge for robots to estimate the poses of objects under complex lighting backgrounds,which limit their operation.Owing to the shadows produced by a point light source,the brightness of the operation scene is seriously unbalanced,and it is difficult to accurately extract the features of objects.It is especially difficult to accurately label the poses of objects with weak corners and textures.This study proposes an automatic pose annotation method for such objects,which combine 3D-2D matching projection and rendering technology to improve the efficiency of dataset annotation.A 6D object pose estimation method under low-light conditions(LP_TGC)is then proposed,including(1)a light preprocessing neural network model based on a low-light preprocessing module(LPM)to balance the brightness of a picture and improve its quality;and(2)a 6D pose estimation model(TGC)based on the keypoint matching.Four typical datasets are constructed to verify our method,the experimental results validated and demonstrated the effectiveness of the proposed LP_TGC method.The estimation model based on the preprocessed image can accurately estimate the pose of the object in the mentioned unstructured environments,and it can improve the accuracy by an average of~3%based on the ADD metric. 展开更多
关键词 6d object pose estimation 6d pose annotation low-light conditions
原文传递
6D Object Pose Estimation in Cluttered Scenes from RGB Images 被引量:1
5
作者 Xiao-Long Yang Xiao-Hong Jia +1 位作者 Yuan Liang Lu-Bin Fan 《Journal of Computer Science & Technology》 SCIE EI CSCD 2022年第3期719-730,共12页
We propose a feature-fusion network for pose estimation directly from RGB images without any depth information in this study.First,we introduce a two-stream architecture consisting of segmentation and regression strea... We propose a feature-fusion network for pose estimation directly from RGB images without any depth information in this study.First,we introduce a two-stream architecture consisting of segmentation and regression streams.The segmentation stream processes the spatial embedding features and obtains the corresponding image crop.These features are further coupled with the image crop in the fusion network.Second,we use an efficient perspective-n-point(E-PnP)algorithm in the regression stream to extract robust spatial features between 3D and 2D keypoints.Finally,we perform iterative refinement with an end-to-end mechanism to improve the estimation performance.We conduct experiments on two public datasets of YCB-Video and the challenging Occluded-LineMOD.The results show that our method outperforms state-of-the-art approaches in both the speed and the accuracy. 展开更多
关键词 two-stream network 6d pose estimation fusion feature
原文传递
采用辅助学习的物体六自由度位姿估计
6
作者 陈敏佳 盖绍彦 +1 位作者 达飞鹏 俞健 《光学精密工程》 EI CAS CSCD 北大核心 2024年第6期901-914,共14页
为了在严重遮挡以及少纹理等具有挑战性的场景下,准确地估计物体在相机坐标系中的位置和姿态,同时进一步提高网络效率,简化网络结构,本文基于RGB-D数据提出了采用辅助学习的六自由度位姿估计方法。网络以目标物体图像块、对应深度图以及... 为了在严重遮挡以及少纹理等具有挑战性的场景下,准确地估计物体在相机坐标系中的位置和姿态,同时进一步提高网络效率,简化网络结构,本文基于RGB-D数据提出了采用辅助学习的六自由度位姿估计方法。网络以目标物体图像块、对应深度图以及CAD模型作为输入,首先,利用双分支点云配准网络,分别得到模型空间和相机空间下的预测点云;接着,对于辅助学习网络,将目标物体图像块和由深度图得到的Depth-XYZ输入多模态特征提取及融合模块,再进行由粗到细的位姿估计,并将估计结果作为先验用于优化损失计算。最后,在性能评估阶段,舍弃辅助学习分支,仅将双分支点云配准网络的输出利用点对特征匹配进行六自由度位姿估计。实验结果表明:所提方法在YCB-Video数据集上的AUC和ADD-S<2 cm结果分别为95.9%和99.0%;在LineMOD数据集上的平均ADD(-S)结果为99.4%;在LM-O数据集上的平均ADD(-S)结果为71.3%。与现有的其他六自由度位姿估计方法相比,采用辅助学习的方法在模型性能上具有优势,在位姿估计准确率上有较大提升。 展开更多
关键词 六自由度位姿估计 辅助学习 深度图像 三维点云
下载PDF
Exploring 2D projection and 3D spatial information for aircraft 6D pose
7
作者 Daoyong FU Songchen HAN +2 位作者 BinBin LIANG Xinyang YUAN Wei LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第8期258-268,共11页
The 6D pose estimation is important for the safe take-off and landing of the aircraft using a single RGB image. Due to the large scene and large depth, the exiting pose estimation methods have unstratified performance... The 6D pose estimation is important for the safe take-off and landing of the aircraft using a single RGB image. Due to the large scene and large depth, the exiting pose estimation methods have unstratified performance on the accuracy. To achieve precise 6D pose estimation of the aircraft, an end-to-end method using an RGB image is proposed. In the proposed method, the2D and 3D information of the keypoints of the aircraft is used as the intermediate supervision,and 6D pose information of the aircraft in this intermediate information will be explored. Specifically, an off-the-shelf object detector is utilized to detect the Region of the Interest(Ro I) of the aircraft to eliminate background distractions. The 2D projection and 3D spatial information of the pre-designed keypoints of the aircraft is predicted by the keypoint coordinate estimator(Kp Net).The proposed method is trained in an end-to-end fashion. In addition, to deal with the lack of the related datasets, this paper builds the Aircraft 6D Pose dataset to train and test, which captures the take-off and landing process of three types of aircraft from 11 views. Compared with the latest Wide-Depth-Range method on this dataset, our proposed method improves the average 3D distance of model points metric(ADD) and 5° and 5 m metric by 86.8% and 30.1%, respectively. Furthermore, the proposed method gets 9.30 ms, 61.0% faster than YOLO6D with 23.86 ms. 展开更多
关键词 2d and 3d information 6d pose regression aircraft 6d pose estimation End-to-end network RGB image
原文传递
面向飞行机械臂的实时目标检测与定位算法 被引量:2
8
作者 张睿 王尧尧 +1 位作者 段雅琦 陈柏 《南京航空航天大学学报》 CAS CSCD 北大核心 2022年第1期27-33,共7页
飞行机械臂要完成自主抓取的任务,对目标物的识别与定位尤为关键。当前飞行机械臂视觉识别算法多采用传统的特征提取等方法。为提升目标物识别及定位的精度和效率,本文设计了一种基于YOLOv5深度学习目标检测算法和RGB‑D传感器的视觉识... 飞行机械臂要完成自主抓取的任务,对目标物的识别与定位尤为关键。当前飞行机械臂视觉识别算法多采用传统的特征提取等方法。为提升目标物识别及定位的精度和效率,本文设计了一种基于YOLOv5深度学习目标检测算法和RGB‑D传感器的视觉识别与定位算法,该算法可以实时检测目标物并对其位姿进行估计,为飞行机械臂的抓取工作服务。同时针对深度学习算法计算量庞大,在嵌入式端无法实现高性能实时检测的问题,引入了模型量化技术优化算法,大幅提升算法推理速度。本文介绍了算法的整体框架及实现过程,利用COCO数据集和动作捕捉系统分别验证了目标检测和位姿估计部分算法的有效性。 展开更多
关键词 飞行机械臂 YOLOv5 RGB‑d 目标检测 模型量化 位姿估计
下载PDF
基于实例分割网络与迭代优化方法的3D视觉分拣系统 被引量:17
9
作者 王德明 颜熠 +4 位作者 周光亮 李勇奇 刘成菊 林立民 陈启军 《机器人》 EI CSCD 北大核心 2019年第5期637-648,共12页
针对工业上常见的弱纹理、散乱堆叠的物体的检测和位姿估计问题,提出了一种基于实例分割网络与迭代优化方法的工件识别抓取系统.该系统包括图像获取、目标检测和位姿估计3个模块.图像获取模块中,设计了一种对偶RGB-D相机结构,通过融合3... 针对工业上常见的弱纹理、散乱堆叠的物体的检测和位姿估计问题,提出了一种基于实例分割网络与迭代优化方法的工件识别抓取系统.该系统包括图像获取、目标检测和位姿估计3个模块.图像获取模块中,设计了一种对偶RGB-D相机结构,通过融合3张深度图像来获得更高质量的深度数据;目标检测模块对实例分割网络Mask R-CNN(region-based convolutional neural network)进行了改进,同时以彩色图像和包含3维信息的HHA(horizontal disparity,height above ground,angle with gravity)特征作为输入,并在其内部增加了STN(空间变换网络)模块,提升对弱纹理物体的分割性能,结合点云信息分割目标点云;在目标检测模块的基础上,位姿估计模块利用改进的4PCS(4-points congruent set)算法和ICP(迭代最近点)算法将分割出的点云和目标模型的点云进行匹配和位姿精修,得到最终位姿估计的结果,机器人根据此结果完成抓取动作.在自采工件数据集上和实际搭建的分拣系统上进行实验,结果表明,该抓取系统能够对不同形状、弱纹理、散乱堆叠的物体实现快速的目标识别和位姿估计,位置误差可达1 mm,角度误差可达1°,其性能可满足实际应用的要求. 展开更多
关键词 3维物体识别 位姿估计 弱纹理物体 RGB-d 实例分割 分拣系统
原文传递
Method for Visual Localization of Oil and Gas Wellhead Based on Distance Function of Projected Features
10
作者 Ying Xie Xiang-Dong Yang +2 位作者 Zhi Liu Shu-Nan Ren Ken Chen 《International Journal of Automation and computing》 EI CSCD 2017年第2期147-158,共12页
A localization method based on distance function of projected features is presented to solve the accuracy reduction or failure problem due to occlusion and blurring caused by smog, when dealing with vision based local... A localization method based on distance function of projected features is presented to solve the accuracy reduction or failure problem due to occlusion and blurring caused by smog, when dealing with vision based localization for target oil and gas wellhead (OGWH). Firstly, the target OGWH is modeled as a cylinder with marker, and a vector with redundant parameter is used to describe its pose. Secondly, the explicit mapping relationship between the pose vector with redundant parameter and projected features is derived. Then, a 2D-point-to-feature distance function is proposed, as well as its derivative. Finally, based on this distance function and its derivative, an algorithm is proposed to estimate the pose of target OGWH directly according to the 2D image information, and the validity of the method is verified by both synthetic data and real image experiments. The results show that this method is able to accomplish the localization in the case of occlusion and blurring, and its anti-noise ability is good especially with noise ratio of less than 70%. 展开更多
关键词 Robot vision visual localization 3d object localization model based pose estimation distance function of projectedfeatures nonlinear least squares random sample consensus (RANSAC).
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部