Layered oxides of P2-type Nao.68Cuo.34Mno.6602, P2-type Nao.68Cuo.34Mno.50Tio.1602, and O'3-type NaCuo.67Sbo.3302 were synthesized and evaluated as cathode materials for room-temperature sodium-ion batteries. The fir...Layered oxides of P2-type Nao.68Cuo.34Mno.6602, P2-type Nao.68Cuo.34Mno.50Tio.1602, and O'3-type NaCuo.67Sbo.3302 were synthesized and evaluated as cathode materials for room-temperature sodium-ion batteries. The first two materials can deliver a capacity of around 70 mAh/g. The Cu2+ is oxidized to Cu3+ during charging, and the Cu3+ goes back to Cu2+ upon discharging. This is the first demonstration of the highly reversible change of the redox couple of Cu2+/Cu3+ with high storage potential in secondary batteries.展开更多
Metal–metal battery bears great potential for next-generation large-scale energy storage system because of its simple manufacture process and low production cost.However,the cross-over of metal cations from the catho...Metal–metal battery bears great potential for next-generation large-scale energy storage system because of its simple manufacture process and low production cost.However,the cross-over of metal cations from the cathode to the anode causes a loss in capacity and influences battery stability.Herein,a coating of poly(ionic liquid)(PIL)with poly(diallyldimethylammonium bis(trifluoromethanesulfonyl)imide)(PDADMA^(+)TFSI^(−))on a commercial polypropylene(PP)separator serves as an anion exchange membrane for a 3.3 V copper–lithium battery.The PIL has a positively charged polymer backbone that can block the migration of copper ions,thus improving Coulombic efficiency,long-term cycling stability and inhibiting self-discharge of the battery.It can also facilitate the conduction of anions through the membrane and reduce polarization,especially for fast charging/discharging.Bruce-Vincent method gives the transport number in the electrolyte to be 0.25 and 0.04 for PP separator without and with PIL coating,respectively.This suggests that the PIL layer reduces the contribution of the internal current due to cation transport.The use of PIL as a coating layer for commercial PP separator is a cost-effective way to improve overall electrochemical performance of copper–lithium batteries.Compared to PP and polyacrylic acid(PAA)/PP separators,the PIL/PP membrane raises the Coulombic efficiency to 99%and decreases the average discharge voltage drop to about 0.09 V when the current density is increased from 0.1 to 1 mA cm^(−2).展开更多
Cu and As were separated and recovered from copper electrolyte by multiple stage electrowinning, reduction with SO2and evaporative crystallization. Experimental results showed that when the current density was 200 A/m...Cu and As were separated and recovered from copper electrolyte by multiple stage electrowinning, reduction with SO2and evaporative crystallization. Experimental results showed that when the current density was 200 A/m2, the electrolyte temperature was 55 °C, the electrolyte circulation rate was about 10 mL/min and the final Cu concentration was higher than 25.88 g/L, the pure copper cathode was recovered. By adjusting the current density to 100 A/m2 and the electrolyte temperature to 65 °C, the removal rate of As was 18.25% when the Cu concentration decreased from 24.69 g/L to 0.42 g/L. After As(V) in Cu-depleted electrolyte was fully reduced to As(Ⅲ) by SO2, the resultant solution was subjected to evaporative crystallization, then As2O3 was produced, and the recovery rate of As was 59.76%. The cathodic polarization curves demonstrated that both Cu2+ concentration and As(V) affect the limiting current of Cu2+ deposition.展开更多
The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty pro...The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty process of acid leaching-selective electrodeposition-deep impurity removal-regeneration was proposed to recovery of the CuS slag,which has been efficient transferred to high purity cathode copper and commercially available ternary precursors.Copper cathode with a purity of 99.67%was prepared under electrochemical reaction conditions at-0.55 V for 2 h.A novel impurity remover-Mn powder,which was used to remove the residual impurities and as a feedstock for the ternary precursor.Finally,NCM523 was regenerated by co-precipitation.The process is superior to the traditional process in economy,energy consumption,CO_(2)emissions,product purity and process duration.This study provides a new approach for solid waste recovery and precious metal enrichment.展开更多
The cyclic voltammetry was used to study the electrochemical reaction of Sm(III) in NaCl-KCl equimolar mixture on the Co and Cu cathodes. It is reasonable to presume that the reduction of Sm(III) to Sm(II) was realize...The cyclic voltammetry was used to study the electrochemical reaction of Sm(III) in NaCl-KCl equimolar mixture on the Co and Cu cathodes. It is reasonable to presume that the reduction of Sm(III) to Sm(II) was realized on Co and Cu electrodes respectively at first step. Sm(II) was subject to the reduction and formed alloys with Co and Cu on the electrode surface.展开更多
Recently, the hydrometallurgy for metal refining is getting more and more popularin China. During a traditional hydrometallurgical process sulphuric acid is often used. In many cases, the working conditions in the sol...Recently, the hydrometallurgy for metal refining is getting more and more popularin China. During a traditional hydrometallurgical process sulphuric acid is often used. In many cases, the working conditions in the solvent extraction and electro winning processes could be very tough for the commonly used material of different equipment and components, such as, austenitic stainless steels of 304/304L and 316L. In a copper refinery, a permanent cathode plate made of 316L was taken out of production due to heavy corrosion. The samples from the corroded plate were investigated thoroughly, possible reasons were pointed out and new material was suggested in this work. It is expected this research could help the copper refineries and Sanmen Sanyou to select the proper cathode plates in complicated working conditions.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51222210 and 11234013)the One Hundred Talent Project of the Chinese Academy of Sciences
文摘Layered oxides of P2-type Nao.68Cuo.34Mno.6602, P2-type Nao.68Cuo.34Mno.50Tio.1602, and O'3-type NaCuo.67Sbo.3302 were synthesized and evaluated as cathode materials for room-temperature sodium-ion batteries. The first two materials can deliver a capacity of around 70 mAh/g. The Cu2+ is oxidized to Cu3+ during charging, and the Cu3+ goes back to Cu2+ upon discharging. This is the first demonstration of the highly reversible change of the redox couple of Cu2+/Cu3+ with high storage potential in secondary batteries.
基金supported by grant from the Research Grants Council(City U 11305220)of the Hong Kong Special Administrative Region,China
文摘Metal–metal battery bears great potential for next-generation large-scale energy storage system because of its simple manufacture process and low production cost.However,the cross-over of metal cations from the cathode to the anode causes a loss in capacity and influences battery stability.Herein,a coating of poly(ionic liquid)(PIL)with poly(diallyldimethylammonium bis(trifluoromethanesulfonyl)imide)(PDADMA^(+)TFSI^(−))on a commercial polypropylene(PP)separator serves as an anion exchange membrane for a 3.3 V copper–lithium battery.The PIL has a positively charged polymer backbone that can block the migration of copper ions,thus improving Coulombic efficiency,long-term cycling stability and inhibiting self-discharge of the battery.It can also facilitate the conduction of anions through the membrane and reduce polarization,especially for fast charging/discharging.Bruce-Vincent method gives the transport number in the electrolyte to be 0.25 and 0.04 for PP separator without and with PIL coating,respectively.This suggests that the PIL layer reduces the contribution of the internal current due to cation transport.The use of PIL as a coating layer for commercial PP separator is a cost-effective way to improve overall electrochemical performance of copper–lithium batteries.Compared to PP and polyacrylic acid(PAA)/PP separators,the PIL/PP membrane raises the Coulombic efficiency to 99%and decreases the average discharge voltage drop to about 0.09 V when the current density is increased from 0.1 to 1 mA cm^(−2).
基金Project(2011B0508000033)supported by the Special Project on the Integration of Industry,Education and Research of Ministry of Education and Guangdong Province,China
文摘Cu and As were separated and recovered from copper electrolyte by multiple stage electrowinning, reduction with SO2and evaporative crystallization. Experimental results showed that when the current density was 200 A/m2, the electrolyte temperature was 55 °C, the electrolyte circulation rate was about 10 mL/min and the final Cu concentration was higher than 25.88 g/L, the pure copper cathode was recovered. By adjusting the current density to 100 A/m2 and the electrolyte temperature to 65 °C, the removal rate of As was 18.25% when the Cu concentration decreased from 24.69 g/L to 0.42 g/L. After As(V) in Cu-depleted electrolyte was fully reduced to As(Ⅲ) by SO2, the resultant solution was subjected to evaporative crystallization, then As2O3 was produced, and the recovery rate of As was 59.76%. The cathodic polarization curves demonstrated that both Cu2+ concentration and As(V) affect the limiting current of Cu2+ deposition.
基金financially supported by the Key Project of Research and Development Plan of Jiangxi Province(Nos.20223BBG74006 and 20201BBE51007)the National Science Foundation of China(No.52060018)the National Science Fund for Distinguished Young Scholars(No.52125002)。
文摘The efficient and environmentally friendly recycling technology of waste residue that including abundant heavy metal produced during the recovery of lithium batteries has become a research hotspot.Herein,a novelty process of acid leaching-selective electrodeposition-deep impurity removal-regeneration was proposed to recovery of the CuS slag,which has been efficient transferred to high purity cathode copper and commercially available ternary precursors.Copper cathode with a purity of 99.67%was prepared under electrochemical reaction conditions at-0.55 V for 2 h.A novel impurity remover-Mn powder,which was used to remove the residual impurities and as a feedstock for the ternary precursor.Finally,NCM523 was regenerated by co-precipitation.The process is superior to the traditional process in economy,energy consumption,CO_(2)emissions,product purity and process duration.This study provides a new approach for solid waste recovery and precious metal enrichment.
文摘The cyclic voltammetry was used to study the electrochemical reaction of Sm(III) in NaCl-KCl equimolar mixture on the Co and Cu cathodes. It is reasonable to presume that the reduction of Sm(III) to Sm(II) was realized on Co and Cu electrodes respectively at first step. Sm(II) was subject to the reduction and formed alloys with Co and Cu on the electrode surface.
文摘Recently, the hydrometallurgy for metal refining is getting more and more popularin China. During a traditional hydrometallurgical process sulphuric acid is often used. In many cases, the working conditions in the solvent extraction and electro winning processes could be very tough for the commonly used material of different equipment and components, such as, austenitic stainless steels of 304/304L and 316L. In a copper refinery, a permanent cathode plate made of 316L was taken out of production due to heavy corrosion. The samples from the corroded plate were investigated thoroughly, possible reasons were pointed out and new material was suggested in this work. It is expected this research could help the copper refineries and Sanmen Sanyou to select the proper cathode plates in complicated working conditions.