期刊文献+
共找到5,900篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Mn-doping on performance of Li_3V_2(PO_4)_3/C cathode material for lithium ion batteries 被引量:3
1
作者 翟静 赵敏寿 王丹丹 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期523-528,共6页
Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galva... Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+. 展开更多
关键词 lithium ion batteries cathode materials Li3V2(PO4)3 SOL-GEL doping
下载PDF
Synthesis and electrochemical performance of Li_2Mg_(0.15)Mn_(0.4)Co_(0.45)SiO_4/C cathode material for lithium ion batteries
2
作者 胡传跃 郭军 +2 位作者 李四军 彭秧锡 文瑾 《Journal of Central South University》 SCIE EI CAS 2012年第7期1791-1795,共5页
The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized suc... The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA-h/g and a discharge capacity of 171 mA.h/g in the first cycle. The discharge capacity is stabilized at about 100 mA-h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5-4.8 V vs Li/Li^+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical nerformance. 展开更多
关键词 lithium ion battery Li2Mg0.15Mn0.4Co0.45Si04/C cathode material SYNTHESIS
下载PDF
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
3
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic Defect engineering cathode materials ion migration
下载PDF
Progress in doping and crystal deformation for polyanions cathode based lithium-ion batteries
4
作者 Sajeela Awasthi Srikanta Moharana +6 位作者 Vaneet Kumar Nannan Wang Elham Chmanehpour Anupam Deep Sharma Santosh K.Tiwari Vijay Kumar Yogendra Kumar Mishra 《Nano Materials Science》 EI CAS CSCD 2024年第5期504-535,共32页
Polyanion-based materials are considered one of the most attractive and promising cathode materials for lithiumion batteries(LIBs)due to their good stability,safety,cost-effectiveness,suitable voltages,and minimal env... Polyanion-based materials are considered one of the most attractive and promising cathode materials for lithiumion batteries(LIBs)due to their good stability,safety,cost-effectiveness,suitable voltages,and minimal environmental impact.However,these materials suffer from poor rate capability and low-temperature performance owing to limited electronic and ionic conductivity,which restricts their practical applicability.Recent developments,such as coating material particles with carbon or a conductive polymer,crystal deformation through the doping of foreign metal ions,and the production of nanostructured materials,have significantly enhanced the electrochemical performances of these materials.The successful applications of polyanion-based materials,especially in lithium-ion batteries,have been extensively reported.This comprehensive review discusses the current progress in crystal deformation in polyanion-based cathode materials,including phosphates,fluorophosphates,pyrophosphates,borates,silicates,sulfates,fluorosilicates,and oxalates.Therefore,this review provides detailed discussions on their synthesis strategies,electrochemical performance,and the doping of various ions. 展开更多
关键词 Crystal deformation in polyanions Metal ions doping cathode materials Surface modification lithium-ion batteries
下载PDF
Smart materials for safe lithium-ion batteries against thermal runaway
5
作者 Yu Ou Pan Zhou +5 位作者 Wenhui Hou Xiao Ma Xuan Song Shuaishuai Yan Yang Lu Kai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期360-392,共33页
In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost ef... In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost efficiency,a quantity of research has been conducted on the commercial application of LIBs.However,it is difficult to achieve satisfying safety and cycling performance simultaneously.There may be thermal runaway(TR),external impact,overcharge and overdischarge in the process of battery abuse,which makes the safety problem of LIBs more prominent.In this review,we summarize recent progress in the smart safety materials design towards the goal of preventing TR of LIBs reversibly from different abuse conditions.Benefiting from smart responsive materials and novel structural design,the safety of LIBs can be improved a lot.We expect to provide a comprehensive reference for the development of smart and safe lithium-based battery materials. 展开更多
关键词 lithium ion batteries(LIBs) Thermal runaway(TR) Smart materials Safe batteries Solid electrolyte interface(SEI)
下载PDF
Two-Dimensional Graphitic Carbon-Nitride(g-C_(3)N_(4))-Coated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) Cathodes for High-Energy-Density and Long-Life Lithium Batteries
6
作者 Zhenliang Duan Pengbo Zhai +1 位作者 Ning Zhao Xiangxin Guo 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期140-149,共10页
High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface... High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance.Herein,the thin layer of two-dimensional(2D)graphitic carbon-nitride(g-C_(3)N_(4))is uniformly coated on the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(denoted as NCM811@CN)using a facile chemical vaporization-assisted synthesis method.As an ideal protective layer,the g-C_(3)N_(4)layer effectively avoids direct contact between the NCM811 cathode and the electrolyte,preventing harmful side reactions and inhibiting secondary crystal cracking.Moreover,the unique nanopore structure and abundant nitrogen vacancy edges in g-C_(3)N_(4)facilitate the adsorption and diffusion of lithium ions,which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode.As a result,the NCM811@CN-3wt%cathode exhibits 161.3 mAh g^(−1)and capacity retention of 84.6%at 0.5 C and 55°C after 400 cycles and 95.7 mAh g^(−1)at 10 C,which is greatly superior to the uncoated NCM811(i.e.129.3 mAh g^(−1)and capacity retention of 67.4%at 0.5 C and 55°C after 220 cycles and 28.8 mAh g^(−1)at 10 C).The improved cycle performance of the NCM811@CN-3wt%cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes,which show 163.8 mAh g^(−1)and the capacity retention of 88.1%at 0.1 C and 30°C after 200 cycles and 95.3 mAh g^(−1)at 1 C. 展开更多
关键词 cathode materials g-C_(3)N_(4) coating LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) lithium batteries PVDF:LLZTO electrolyte membranes
下载PDF
Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages 被引量:14
7
作者 Kai-lin Cheng Dao-bin Mu +3 位作者 Bo-rong Wu Lei Wang Ying Jiang Rui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第3期342-351,共10页
A spherical-like Ni0.6Co0.2Mn0.2(OH)2precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure,... A spherical-like Ni0.6Co0.2Mn0.2(OH)2precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure, morphology, and the electrochemical performance of the as-prepared LiNi0.6Co0.2Mn0.2O2were investigated in detail. The as-prepared material was characterized by X-ray diffraction, scanning electron microscopy, laser particle size analysis, charge–discharge tests, and cyclic voltammetry measurements. The results show that the spherical-like LiNi0.6Co0.2Mn0.2O2material obtained by calcination at 900°C displayed the most significant layered structure among samples calcined at various temperatures, with a particle size of approximately 10 μm. It delivered an initial discharge capacity of 189.2 mAh•g−1at 0.2C with a capacity retention of 94.0% after 100 cycles between 2.7 and 4.3 V. The as-prepared cathode material also exhibited good rate performance, with a discharge capacity of 119.6 mAh•g−1at 5C. Furthermore, within the cut-off voltage ranges from 2.7 to 4.3, 4.4, and 4.5 V, the initial discharge capacities of the calcined samples were 170.7, 180.9, and 192.8 mAh•g−1, respectively, at a rate of 1C. The corresponding retentions were 86.8%, 80.3%, and 74.4% after 200 cycles, respectively. © 2017, University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 CALCINATion cathodes Cobalt Crystal structure Cyclic voltammetry Electric batteries Electric discharges Electrochemical properties Electrodes ions lithium lithium alloys lithium compounds Manganese NICKEL Particle size Particle size analysis Scanning electron microscopy Secondary batteries X ray diffraction
下载PDF
Preparation and electrochemical properties of Y-doped Li_3V_2(PO_4)_3 cathode materials for lithium batteries 被引量:11
8
作者 钟胜奎 刘乐通 +4 位作者 姜吉琼 李延伟 王健 刘洁群 李艳红 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第1期134-137,共4页
Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measuremen... Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measurements.XRD studies showed that the Y-doped Li3V2(PO4)3 had the same monoclinic structure as the undoped Li3V2(PO4)3.The Y-doped Li3V2(PO4)3 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram(CV), and electrochemical impedance spectra(EIS).The optimal doping content of Y was x=0.03 in Li3V2-xYx(PO4)3 system.The Y-doped Li3V2(PO4)3 samples showed a better cyclic ability.The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through the Y-doping.The improved electrochemical perormances of the Y-doped Li3V2(PO4)3 cathode materials were attributed to the addition of Y3+ ion by stabilizing the monoclinic structure. 展开更多
关键词 lithium ion batteries cathode material Li3V2(PO4)3 Y-doping carbothemml reduction method cyclic voltammogram (CV) rare earths
下载PDF
Rare Earth Elements-Doped LiCoO_2 Cathode Material for Lithium-Ion Batteries 被引量:6
9
作者 魏进平 曹晓燕 +2 位作者 潘桂玲 叶茂 阎杰 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第4期466-468,共3页
Some compounds of LiCo 1- x RE x O 2 (RE=rare earth elements and x =0.01~0.03) were prepared by doping rare earth elements to LiCoO 2 via solid state synthesis. The microstructure characteristics of t... Some compounds of LiCo 1- x RE x O 2 (RE=rare earth elements and x =0.01~0.03) were prepared by doping rare earth elements to LiCoO 2 via solid state synthesis. The microstructure characteristics of the LiCo 1- x RE x O 2 were investigated by XRD. It was found that the lattice parameters c are increased and the lattice volumes are enlarged compared to that of LiCoO 2. Moreover, the performance of LiCo 1- x RE x O 2 as the cathode material in lithium ion battery is improved, especially LiCo 1- x Y x O 2 and LiCo 1- x La x O 2. The initial charge/discharge capacities of LiCo 0.99 Y 0.01 O 2 and LiCo 0.99 La 0.01 O 2 are 174/154 (mAh·g -1 ) and 159/149 (mAh·g -1 ) respectively, while those for LiCoO 2 working in the same way are only 139/131 (mAh·g -1 ). 展开更多
关键词 metallic material lithium ion battery DOPING cathode materials LiCoO 2 rare earths
下载PDF
Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries 被引量:36
10
作者 Peiyuan Guan Lu Zhou +5 位作者 Zhenlu Yu Yuandong Sun Yunjian Liu Feixiang Wu Yifeng Jiang Dewei Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期220-235,共16页
Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cat... Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cathode serves as a key component in LIB,its properties significantly affect the performance of the whole system.Recently,the cathode surface modification based on coating technique has been widely employed to enhance the electrochemical performances by improving the material conductivity,stabilising the physical structure of materials,as well as preventing the reactions between the electrode and electrolyte.In this work,we reviewed the present of a number of promising cathode materials for Li-ion batteries.After that,we summarized the very recent research progress focusing on the surface coating strategies,mainly including the coating materials,the coating technologies,as well as the corresponding working mechanisms for cathodes.At last,the challenges faced and future guidelines for optimizing cathode materials are discussed.In this study,we propose that the structure of cathode is a crucial factor during the selection of coating materials and technologies. 展开更多
关键词 lithium-ion battery cathode Surface Coating ELECTROCHEMICAL performance
下载PDF
Simultaneous surface modification method for 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries: Acid treatment and LiCoPO4 coating 被引量:4
11
作者 Min-Joon Lee Eunsol Lho +2 位作者 Pilgun Oh Yoonkook Son Jaephil Cho 《Nano Research》 SCIE EI CAS CSCD 2017年第12期4210-4220,共11页
Li-rich layered cathode materials have been considered the most promising candidates for large-scale Li-ion batteries due to their low cost and high reversible capacity. However, these materials have many drawbacks th... Li-rich layered cathode materials have been considered the most promising candidates for large-scale Li-ion batteries due to their low cost and high reversible capacity. However, these materials have many drawbacks that hinder commercialization, such as low initial efficiency and cyclability at elevated temperatures. To overcome these barriers, we propose an efficient and effective surface modification method, in which chemical activation (acid treatment) and LiCoPO4 coating were carried out simultaneously. During the synthesis, the lithium ions were extracted from the lattice, leading to improved Columbic efficiency, and these ions were used for the formation of LiCoPO4. The Ni and Co doped spinel phase was formed at the surface of the host material, which gives rise to the facile pathway for lithium ions. The LiCoPO4 and highly doped spinel on the surface acted as double protection layers that effectively prevented side reactions on the surface at 60℃. Moreover, the transition metal migration of the modified cathode was weakened, due to the presence of the spinel structure at the surface. Consequently, the newly developed Li-rich cathode material exhibited a high 1st efficiency of 94%, improved capacity retention of 82% during 100 cycles at 60℃, and superior rate capability of 62% at 12C (1C = 200 mA/g) rate at 24℃. In addition, the thermal stability of the modified cathode was significantly improved as compared to that of a bare counterpart at 4.6 V, showing a 60% decrease in the total heat generation. 展开更多
关键词 lithium ion battery cathode material Li-rich material ELECTROCHEMISTRY surface modification
原文传递
Synthesis and characterization of triclinic structural LiVPO_4F as possible 4.2 V cathode materials for lithium ion batteries 被引量:8
12
作者 钟胜奎 尹周澜 +1 位作者 王志兴 陈启元 《Journal of Central South University of Technology》 EI 2007年第3期340-343,共4页
A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted un... A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V^3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with ElF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p I ), isostructural with the naturally occurring mineral tavorite, EiFePO4-OH. SEM image exhibits that the particle size is about 2μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Ei/Li^+), and the capacity retains 89 mA·h/g after 30 cycles. 展开更多
关键词 lithium ion batteries cathode material LIVPO4F carbon-thermal reduction method
下载PDF
Ribbon-like Cu doped V6O13 as Cathode Material for High-performance Lithium Ion Batteries 被引量:3
13
作者 何金云 龙飞 +3 位作者 PENG Daijiang WU Xiaoli MO Shuyi ZOU Zhengguang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1397-1401,共5页
Ribbon-like Cu doped V6O(13) was synthesized via a simple solvothermal approach followed by heat treatment in air.As an cathode material for lithium ion battery,the ribbon-like Cu doped V6O(13 )electrode exhibited... Ribbon-like Cu doped V6O(13) was synthesized via a simple solvothermal approach followed by heat treatment in air.As an cathode material for lithium ion battery,the ribbon-like Cu doped V6O(13 )electrode exhibited good capacity retention with a reversible capacity of over 313 m Ah·g^-1 for up to 50 cycles at 0.1C,as well as a high charge capacity of 306 m Ah·g^-1 at a high current rate of 1 C,in comparison to undoped V6O(13 )electrode(267 m Ah·g^-1 at 0.1C and 273 m Ah·g^-1 at 1 C).The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the Cu ions on the mophology and the electronic conductivity of V6O(13) during the lithiation and delithiation process. 展开更多
关键词 vanadium oxide ion doping cathode material lithium ion battery
下载PDF
Microwave synthesis of Li_2FeSiO_4 cathode materials for lithium-ion batteries 被引量:20
14
作者 Zhong Dong Peng Yan Bing Cao Guo Rong Hu Ke Du Xu Guang Gao Zheng Wei Xiao 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第8期1000-1004,共5页
A novel synthetic method of microwave processing to prepare Li2FeSiO4 cathode materials is adopted. The Li2FeSiO4 cathode material is prepared by mechanical ball-milling and subsequent microwave processing. Olivin-typ... A novel synthetic method of microwave processing to prepare Li2FeSiO4 cathode materials is adopted. The Li2FeSiO4 cathode material is prepared by mechanical ball-milling and subsequent microwave processing. Olivin-type Li2FeSiO4 sample with uniform and fine particle sizes is successfully and fast synthesized by microwave heating at 700 ℃ in 12 rain. And the obtained Li2FeSiO4 materials show better electrochemical performance and microstructure than those of Li2FeSiO4 sample by the conventional solidstate reaction. ?2009 Yan Bing Cao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. 展开更多
关键词 Li-ion battery cathode material Microwave synthesis LI2FESIO4
下载PDF
Synthesis and electrochemical properties of Li[Ni_xCo_yMn_(1-x-y)]O_2 (x, y = 2/8, 3/8) cathode materials for lithium ion batteries 被引量:2
15
作者 HU Chuanyue LI Zheng +4 位作者 GUO Jun DU Yong WANG Xingyan LIU Xin YI Tao 《Rare Metals》 SCIE EI CAS CSCD 2009年第1期43-48,共6页
The tmiform layered Li(Ni2/8Co3/8Mn3/8)O2, Li(Ni3/8Co2/8Mn3/8)O2, and Li(Ni3/8Co3/8Mn2/8)O2 cathode materials for lithium ion batteries were prepared using the hydroxide co-precipitation method. The effects of c... The tmiform layered Li(Ni2/8Co3/8Mn3/8)O2, Li(Ni3/8Co2/8Mn3/8)O2, and Li(Ni3/8Co3/8Mn2/8)O2 cathode materials for lithium ion batteries were prepared using the hydroxide co-precipitation method. The effects of calcination temperature and transition metal contents on the structure and electrochemical properties of the Li-Ni-Co-Mn-O were systemically studied. The results of XRD and electrochemical performance measurement show that the ideal preparation conditions were to prepare the Li(Ni3/8Co3/8Mn2/8)O2 cathode material calcined at 900℃ for 10 h. The well-ordered Li(Ni3/8Co3/8Mn2/8)O2 synthesized under the optimal conditions has the I003/I104 ratio of 1.25 and the R value of 0.48 and delivers the initial discharge capacity of 172.9 mA·h·g^-1, the discharge capacity of 166.2 mA·h·g^-1 after 20 cycles at 0.2C rate, and the impedance of 558 Ω after the first cycle. The decrease of Ni content results in the decrease of discharge capacity and the bad cycling performance of the Li-Ni-Co-Mn-O cathode materials, but the decreases of Mn content and Co content to a certain extent can improve the electrochemical properties of the Li-Ni-Co-Mn-O cathode materials. 展开更多
关键词 lithium ion batteries cathode material electrochemical properties hydroxide co-precipitation method
下载PDF
Influence of Doping Rare Earth on Performance of Lithium Manganese Oxide Spinels as Cathode Materials for Lithium-Ion Batteries 被引量:6
16
作者 唐致远 张娜 +1 位作者 卢星河 黄庆华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第1期120-123,共4页
Some rare earth doping spinel LiMn_(2-x)RE_xO_4 (RE=La, Ce, Nd) cathode materials for lithium ion batteries were synthesized by the solid-state reaction method. The structure characteristics of these produced samples ... Some rare earth doping spinel LiMn_(2-x)RE_xO_4 (RE=La, Ce, Nd) cathode materials for lithium ion batteries were synthesized by the solid-state reaction method. The structure characteristics of these produced samples were investigated by XRD, SEM, and particle size distribution analysis. According to the microstructure and charge-discharge testing, the effect of doping rare earth on stabilizing the spinel structure was analyzed. Through a series of doping experiments, it is shown that when the doping content x within the range of 0.01~0.02 the cycle performance of the materials is greatly improved. The discharge capacity of the sample LiMn_(1.98)La_(0.02)O_4, LiMn_(1.98)Ce_(0.02)O_4 and LiMn_(1.98)Nd_(0.02)O_4 remain 119.1, 114.2 and 117.5 mAh·g^(-1) after 50 cycles. 展开更多
关键词 metallic material cathode materials RE-doping LiMn_2O_4 lithium-ion batteries rare earths
下载PDF
A closed-loop process for recycling LiNi_xCo_yMn_((1-x-y))O_2 from mixed cathode materials of lithium-ion batteries 被引量:14
17
作者 Rujuan Zheng Wenhui Wang +6 位作者 Yunkun Dai Quanxin Ma Yuanlong Liu Deying Mu Ruhong Li Jie Rena Changsong Dai 《Green Energy & Environment》 SCIE 2017年第1期42-50,共9页
With the rapid development of consumer electronics and electric vehicles(EV), a large number of spent lithium-ion batteries(LIBs) have been generated worldwide. Thus, effective recycling technologies to recapture a si... With the rapid development of consumer electronics and electric vehicles(EV), a large number of spent lithium-ion batteries(LIBs) have been generated worldwide. Thus, effective recycling technologies to recapture a significant amount of valuable metals contained in spent LIBs are highly desirable to prevent the environmental pollution and resource depletion. In this work, a novel recycling technology to regenerate a LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode material from spent LIBs with different cathode chemistries has been developed. By dismantling, crushing,leaching and impurity removing, the LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2(selected as an example of LiNi_xCo_yMn_(1-x-y)O_2) powder can be directly prepared from the purified leaching solution via co-precipitation followed by solid-state synthesis. For comparison purposes, a fresh-synthesized sample with the same composition has also been prepared using the commercial raw materials via the same method. X-ray diffraction(XRD), scanning electron microscopy(SEM) and electrochemical measurements have been carried out to characterize these samples. The electrochemical test result suggests that the re-synthesized sample delivers cycle performance and low rate capability which are comparable to those of the freshsynthesized sample. This novel recycling technique can be of great value to the regeneration of a pure and marketable LiNi_xCo_yMn_(1-x-y)O_2 cathode material with low secondary pollution. 展开更多
关键词 Spent lithium-ion battery cathode material recycling Acid leaching Purification CO-PRECIPITATion
下载PDF
Synthesis and electrochemical properties of Al-doped LiVPO_4F cathode materials for lithium-ion batteries 被引量:7
18
作者 ZHONG Shengkui YIN Zhoulan +1 位作者 WANG Zhixing CHEN Qiyuan 《Rare Metals》 SCIE EI CAS CSCD 2007年第5期445-449,共5页
Al-doped LiVPO4F cathode materials LiAlxV1-xPO4F were prepared by two-step reactions based on a car-bothermal reduction (CTR) process. The properties of the Al-doped LiVPO4F were investigated by X-ray diffraction (... Al-doped LiVPO4F cathode materials LiAlxV1-xPO4F were prepared by two-step reactions based on a car-bothermal reduction (CTR) process. The properties of the Al-doped LiVPO4F were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),and electrochemical measurements. XRD studies show that the Al-doped LiVPO4F has the same triclinic structure (space group p-↑1 ) as the undoped LiVPO4F. The SEM images exhibit that the particle size of Al-doped LiVPO4F is smaller than that of the undoped LiVPO4F and that the smallest particle size is only about 1 μm. The Al-doped LiVPO4F was evaluated as a cathode material for secondary lithium batteries,and exhibited an improved reversibility and cycleability,which may be attributed to the addition of Al^3+ ion by stabilizing the triclinic structure. 展开更多
关键词 lithium-ion batteries cathode material LIVPO4F Al-doping carbothermal reduction method cyclic voltammetry (CV)
下载PDF
Influence of Ti^(4+) doping on electrochemical properties of LiFePO_4/C cathode material for lithium-ion batteries 被引量:12
19
作者 胡国荣 高旭光 +3 位作者 彭忠东 杜柯 谭显艳 刘艳君 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第2期296-300,共5页
To improve the performance of LiFePO4, single phase Li1-4xTixFePO4/C (x=0, 0.005, 0.010, 0.015) cathodes were synthesized by solid-state method. A certain content of glucose was used as carbon precursor and content of... To improve the performance of LiFePO4, single phase Li1-4xTixFePO4/C (x=0, 0.005, 0.010, 0.015) cathodes were synthesized by solid-state method. A certain content of glucose was used as carbon precursor and content of carbon in every final product was about 3.5%. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy observations(SEM), charge/discharge test, carbon analysis and electrochemical impedance spectroscopy(EIS). The results indicate that the prepared samples have ordered olivine structure and doping of the low concentration Ti^(4+) does not affect the structure of the samples. The electrochemical capabilities evaluated by charge-discharge test show that the sample with 1% Ti^(4+) (molar fraction) has good electrochemical performance delivering about an initial specific capacity of 146.7 mA·h/g at 0.3C rate. Electrochemical impedance spectroscopy measurement results show that the charge transfer resistance of the sample could be decreased greatly by doping an appropriate amount Ti^(4+). 展开更多
关键词 层状阴极材料 LIFEPO4/C 锂离子电池 钛离子掺杂 电化学性质
下载PDF
A novel synthetic route for LiFePO_4/C cathode materials by addition of starch for lithium-ion batteries 被引量:5
20
作者 Shao Hua Luo, Zi Long Tang, Jun Biao Lu, Zhong Tai Zhang State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第2期237-240,共4页
LiFePO4/Carbon composite cathode material was prepared using starch as carbon source by spray-pelleting and subsequent pyrolysis in N2. The samples were characterized by XRD, SEM, Raman, and their electrochemical perf... LiFePO4/Carbon composite cathode material was prepared using starch as carbon source by spray-pelleting and subsequent pyrolysis in N2. The samples were characterized by XRD, SEM, Raman, and their electrochemical performance was investigated in terms of cycling behavior. There has a special micro-morphology via the process, which is favorable to electrochemical properties. The discharge capacity of the LiFePO4.C composite was 170 mAh g-1, equal to the theoretical specific capacity at 0.1 C rate. At 4 C current density, the specific capacity was about 80 mAh g-1, which can satisfy for transportation applications if having a more flat discharge flat. 展开更多
关键词 lithium-ion batteries cathode material Carbon coated LiFePO4 Spray-pelleting
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部