期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Elevating kinetics of passivated Fe anodes with NH_(4)Cl regulator:Toward low-cost,long-cyclic and green cathode-free Fe-ion aqueous batteries 被引量:1
1
作者 Shibo Chai Jianhui Zhu +1 位作者 Jian Jiang Chang Ming Li 《Nano Research》 SCIE EI CSCD 2022年第4期3187-3194,共8页
The environment benignity and battery cost are major concerns for grid-scale energy storage applications.The emerging dendrite-free Fe-ion aqueous batteries are promising due to the rich natural abundance,low cost and... The environment benignity and battery cost are major concerns for grid-scale energy storage applications.The emerging dendrite-free Fe-ion aqueous batteries are promising due to the rich natural abundance,low cost and non-toxicity for Fe resources.However,serious passivation reactions on Fe anodes and poor long-term cyclability for matched cathodes still stand in the way for their practical usage.To settle above constraints,we herein use NH_(4)Cl as the electrolyte regulator to elevate the reaction kinetics of passivated Fe anodes,and also propose a special cathode-free design to prolong the cells lifetime over 1,000 cycles.The added NH_(4)Cl can erode/break inert passivation layers and strengthen the ion conductivity of electrolytes,facilitating the reversible Fe plating/stripping and Fe^(2+)shuttling.The highly puffed nano carbon foams function as current collectors and actives anchoring hosts,enabling expedite Fe^(2+)adsorption/desorption,FeII/FeIII redox conversions and FeIII deposition.The configured rocking-chair Fe-ion cells have good environmental benignity and decent energy-storage behaviors,including high reactivity/reversibility,outstanding cyclic stability and far enhanced operation longevity.Such economical,long-cyclic and green cathode-free Fe-ion batteries may hold great potential in near-future energy-storage power stations. 展开更多
关键词 elevated kinetics passivated Fe anodes NH_(4)Cl regulator cathode-free design Fe-ion batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部