Glow discharge cathodic sputtering of alloys containing second phase precipitates or injected oxide particles has been observed with energy dispersive X-ray spectrometer and scanning electron microprobe.It was shown t...Glow discharge cathodic sputtering of alloys containing second phase precipitates or injected oxide particles has been observed with energy dispersive X-ray spectrometer and scanning electron microprobe.It was shown that the formation of cones during the sputtering in these alloys is due to masking of the matrix by glow sputtering second phase precipitates or oxide particles.At steady state,the density of cottes were found to be a function of the densities pre- cipitates or oxide particles in bulk alloy.In addition to the changes of local sputtering rate,the electrostatic effect may play a role on the formation fo cones.展开更多
Ti-Si-N composite coatings were synthesized on a novel combining cathode and middle-frequency magnetron sputtering system, designed on an industrial scale. Ti was produced from the arc target and Si from magnetron tar...Ti-Si-N composite coatings were synthesized on a novel combining cathode and middle-frequency magnetron sputtering system, designed on an industrial scale. Ti was produced from the arc target and Si from magnetron target during deposition. The influences of negative bias voltage and Si content on the hardness and microstructure of the coatings were investigated. The composite coatings prepared under optimized conditions were characterized to be nc-TiN/a-Si3N4 structure with grain sizes of TiN ranging from 8-15 nm and exhibited a high hardness of 40 GPa. The enhancement of the hardness is suggested to be caused by the nanograin-amorphous structure effects.展开更多
A new net-shape cathode sputtering target which has a simple structure and a hig h sputtering was put forward. The multiple-structure made of alloying and coatin g layers of tantalum was achieved on the surface of TC4...A new net-shape cathode sputtering target which has a simple structure and a hig h sputtering was put forward. The multiple-structure made of alloying and coatin g layers of tantalum was achieved on the surface of TC4 (Ti6Al4V) using this met hod in double glow surface alloying process. The tantalized samples were investi gated by SEM, XRD and electrochemical corrosion method .Results show the complic ated tissue of pure tantalizing layer and diffusion layer was successfully forme d on the surface of TC4 with the method of net-shape cathode glow discharge, whi ch further improved the corrosion-resistance of TC4 and formed good corrosion-re sistant alloys.展开更多
For the purpose of producing high intensity, multiply charged metal ion beams, the dual hollow cathode ion source for metal ions (DUHOCAMIS) was derived from the hot cathode Penning ion source combined with the holl...For the purpose of producing high intensity, multiply charged metal ion beams, the dual hollow cathode ion source for metal ions (DUHOCAMIS) was derived from the hot cathode Penning ion source combined with the hollow cathode sputtering experiments in 2007. To investigate the behavior of this discharge geometry in a stronger magnetic bottle-shaped field, a new test bench for DUHOCAMIS with a high magnetic bottle-shaped field up to 0.6 T has been set up at the Peking University. The experiments with magnetic fields from 0.13 T to 0.52 T have indicated that the discharge behavior is very sensitive to the magnetic flux densities. The slope of discharge curves in a very wide range can be controlled by changing the magnetic field as well as regulated by adjusting the cathode heating power; the production of metallic ions would be much greater than gas ions with the increased magnetic flux density; and the magnetic field has a much higher influence on the DHCD mode than on the PIG mode.展开更多
文摘Glow discharge cathodic sputtering of alloys containing second phase precipitates or injected oxide particles has been observed with energy dispersive X-ray spectrometer and scanning electron microprobe.It was shown that the formation of cones during the sputtering in these alloys is due to masking of the matrix by glow sputtering second phase precipitates or oxide particles.At steady state,the density of cottes were found to be a function of the densities pre- cipitates or oxide particles in bulk alloy.In addition to the changes of local sputtering rate,the electrostatic effect may play a role on the formation fo cones.
基金Funded by the Natural Science Foundation of China(No.10435060 andNo. 10675095)
文摘Ti-Si-N composite coatings were synthesized on a novel combining cathode and middle-frequency magnetron sputtering system, designed on an industrial scale. Ti was produced from the arc target and Si from magnetron target during deposition. The influences of negative bias voltage and Si content on the hardness and microstructure of the coatings were investigated. The composite coatings prepared under optimized conditions were characterized to be nc-TiN/a-Si3N4 structure with grain sizes of TiN ranging from 8-15 nm and exhibited a high hardness of 40 GPa. The enhancement of the hardness is suggested to be caused by the nanograin-amorphous structure effects.
文摘A new net-shape cathode sputtering target which has a simple structure and a hig h sputtering was put forward. The multiple-structure made of alloying and coatin g layers of tantalum was achieved on the surface of TC4 (Ti6Al4V) using this met hod in double glow surface alloying process. The tantalized samples were investi gated by SEM, XRD and electrochemical corrosion method .Results show the complic ated tissue of pure tantalizing layer and diffusion layer was successfully forme d on the surface of TC4 with the method of net-shape cathode glow discharge, whi ch further improved the corrosion-resistance of TC4 and formed good corrosion-re sistant alloys.
基金Supported by National Natural Science Foundation of China(11105008,10775011)
文摘For the purpose of producing high intensity, multiply charged metal ion beams, the dual hollow cathode ion source for metal ions (DUHOCAMIS) was derived from the hot cathode Penning ion source combined with the hollow cathode sputtering experiments in 2007. To investigate the behavior of this discharge geometry in a stronger magnetic bottle-shaped field, a new test bench for DUHOCAMIS with a high magnetic bottle-shaped field up to 0.6 T has been set up at the Peking University. The experiments with magnetic fields from 0.13 T to 0.52 T have indicated that the discharge behavior is very sensitive to the magnetic flux densities. The slope of discharge curves in a very wide range can be controlled by changing the magnetic field as well as regulated by adjusting the cathode heating power; the production of metallic ions would be much greater than gas ions with the increased magnetic flux density; and the magnetic field has a much higher influence on the DHCD mode than on the PIG mode.