For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular be...For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process.In the article,the microstructure,optical and electrical of BTO and In_(2)O_(3) mixed transparent conductive BaInSnO_(x)(BITO)film deposited by filtered cathodic vacuum arc technique(FCVA)on glass substrate at room temperature were firstly reported.The BITO film with thickness of 300 nm had mainly In_(2)O_(3) polycrystalline phase,and minor polycrystalline BTO phase with(001),(011),(111),(002),(222)crystal faces which were first deposited at room temperature on amorphous glass.The transmittance was 70%–80%in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength.The basic optical properties included the real and imaginary parts,high frequency dielectric constants,the absorption coefficient,the Urbach energy,the indirect and direct band gaps,the oscillator and dispersion energies,the static refractive index and dielectric constant,the average oscillator wavelength,oscillator length strength,the linear and the third-order nonlinear optical susceptibilities,and the nonlinear refractive index were all calculated.The film was the n-type conductor with sheet resistance of 704.7Ω/□,resistivity of 0.02Ω⋅cm,mobility of 18.9 cm2/V⋅s,and carrier electron concentration of 1.6×10^(19) cm^(−3) at room temperature.The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.展开更多
Filtered cathodic vacuum arc(FCVA)deposition is regarded as an important technique for the synthesis of tetrahedral amorphous carbon(ta-C)films due to its high ionization rate,high deposition rate and effective filtra...Filtered cathodic vacuum arc(FCVA)deposition is regarded as an important technique for the synthesis of tetrahedral amorphous carbon(ta-C)films due to its high ionization rate,high deposition rate and effective filtration of macroparticles.Probing the plasma characteristics of arc discharge contributes to understanding the deposition mechanism of ta-C films on a microscopic level.This work focuses on the plasma diagnosis of an FCVA discharge using a Langmuir dualprobe system with a discrete Fourier transform smoothing method.During the ta-C film deposition,the arc current of graphite cathodes and deposition pressure vary from 30 to 90 A and from 0.3 to 0.9 Pa,respectively.The plasma density increases with arc current but decreases with pressure.The carbon plasma density generated by the arc discharge is around the order of10^(10)cm^(-3).The electron temperature varies in the range of 2-3.5 eV.As the number of cathodic arc sources and the current of the focused magnetic coil increase,the plasma density increases.The ratio of the intensity of the D-Raman peak and G-Raman peak(I_(D)/I_(G))of the ta-C films increases with increasing plasma density,resulting in a decrease in film hardness.It is indicated that the mechanical properties of ta-C films depend not only on the ion energy but also on the carbon plasma density.展开更多
ZrN/TiZrN multilayers are deposited by using the cathodic vacuum arc method with different substrate bias(from 0 to 800 V),using Ti and Zr plasma flows in residual N 2 atmosphere,combined with ion bombardment of sam...ZrN/TiZrN multilayers are deposited by using the cathodic vacuum arc method with different substrate bias(from 0 to 800 V),using Ti and Zr plasma flows in residual N 2 atmosphere,combined with ion bombardment of sample surfaces.The effect of pulsed bias on the structure and properties of films is investigated.Microstructure of the coating is analyzed by X-ray diffraction(XRD),and scanning electron microscopy(SEM).In addition,nanohardness,Young's modulus,and scratch tests are performed.The experimental results show that the films exhibit a nanoscale multilayer structure consisting of TiZrN and ZrN phases.Solid solutions are formed for component TiZrN films.The dominant preferred orientation of TiZrN films is(111) and(220).At a pulsed bias of 200 V,the nanohardness and the adhesion strength of the ZrN/TiZrN multilayer reach a maximum of 38 GPa,and 78 N,respectively.The ZrN/TiZrN multilayer demonstrates an enhanced nanohardness compared with binary TiN and ZrN films deposited under equivalent conditions.展开更多
Ti-Al-N hard films have been prepared by cathodic arc deposition by using an unipolar pulsed bias.In the present study,Ti-Al-N films were deposited on stainless steel and silicon wafers.The deposition rate,micrograph,...Ti-Al-N hard films have been prepared by cathodic arc deposition by using an unipolar pulsed bias.In the present study,Ti-Al-N films were deposited on stainless steel and silicon wafers.The deposition rate,micrograph,preferred orientation and composition were systematically investigated by usingx-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDX), and a scanning electron microscope(SEM).It is shown that substate bias duty cycle and frequency have a great effect on film structure.A simple explanation for the results is also presented.展开更多
Tetrahedral amorphous carbon(ta‐C)has emerged as an excellent coating material for improving the reliability of application components under high normal loads.Herein,we present the results of our investigations regar...Tetrahedral amorphous carbon(ta‐C)has emerged as an excellent coating material for improving the reliability of application components under high normal loads.Herein,we present the results of our investigations regarding the mechanical and tribological properties of a 2‐μm‐thick multilayer ta‐C coating on high‐speed steel substrates.Multilayers composed of alternating soft and hard layers are fabricated using filtered a cathodic vacuum arc with alternating substrate bias voltages(0 and 100 V or 0 and 150 V).The thickness ratio is discovered to be 1:3 for the sp2‐rich and sp3‐rich layers.The results show that the hardness and elastic modulus of the multilayer ta‐C coatings increase with the sp3 content of the hard layer.The hardness reached approximately 37 GPa,whereas an improved toughness and a higher adhesion strength(>29 N)are obtained.The friction performance(μ=0.07)of the multilayer coating is similar to that of the single layer ta‐C thick coating,but the wear rate(0.13×10^(–6) mm^(3)/(N∙m))improved under a high load of 30 N.We further demonstrate the importance of the multilayer structure in suppressing crack propagation and increasing the resistance to plastic deformation(H3/E2)ratio.展开更多
Carbon nitride films have been synthesized in a wide range of biases from 0 to -900 V by vacuum cathodic arc method. The N content was about 12.0-22.0 at. pct. Upon increasing the biases from 0 to -100 V, the N conten...Carbon nitride films have been synthesized in a wide range of biases from 0 to -900 V by vacuum cathodic arc method. The N content was about 12.0-22.0 at. pct. Upon increasing the biases from 0 to -100 V, the N content increased from 15.0 to 22.0 at. pct which could be attributed to the knot-on effect. While the further increasing biases led to the gradual falling of the N content to 12.0 at. pct at -900 V due to the enhancement of the sputtering effect. Below -200 V, with the increasing biases the sp2C fraction in the films decreased, as a result of vvhich the I(D)/I(G) fell in the Raman spectra and the sp peaks also showed the decreasing tendency relative to the s peaks in the VBXPS (valence band X-ray photoelectron spectroscopy). While above -200 V, the sp2C fraction increased and the films became graphitinized gradually, accompanying which the I(D)/I(G) rose from -200 V to -300 V and the Raman spectra even shovved the graphite characteristic above -300 V and the sp peaks rose again relative to the s peak. The carbon nitride films mainly consist of three types of bonding: CC, sp2CN and sp3CN bonds. In the first stage the sp3CN relative ratio rises and falls in the second stage, which corresponded well with the variation of the sp2C in the films. The subpiantation mechanism resulting from the effect of ion energy played an important role in deciding'the variation of the microstructure of the carbon nitride films.展开更多
A major obstacle to the broad application of cathodic arc plasma deposition is the presence of macroparticles. In this paper, the properties of the large rectangular arc ion plating with a magnetic filtering shutter s...A major obstacle to the broad application of cathodic arc plasma deposition is the presence of macroparticles. In this paper, the properties of the large rectangular arc ion plating with a magnetic filtering shutter system to filter macroparticles are studied. It is proposed that the macroparticles in the plasma beam are effectively removed with the magnetic filtering shutter system, and the quality of the deposited films is improved.展开更多
TiAlN multilayer coatings composed of TiAl and TiAlN layers were deposited on ZL109 alloys using filtered cathodic vacuum arc(FCVA)technology.The effect of bias voltage on the microstructure and properties of the coat...TiAlN multilayer coatings composed of TiAl and TiAlN layers were deposited on ZL109 alloys using filtered cathodic vacuum arc(FCVA)technology.The effect of bias voltage on the microstructure and properties of the coating was systematically studied.The results show that the coating exhibits a multi-phase structure dominated by TiAlN phase.As the bias voltage increases,the orientation of TiAlN changes from(200)plane to(111)plane due to the increase of atomic mobility and lattice distortion.The hardness,elastic modulus and adhesion of the coating show the same trend of change,that is,first increase and then decrease.When the bias voltage is 75 V,the coating exhibits the highest hardness(~30.3 GPa),elastic modulus(~229.1 GPa),adhesion(HF 2)and the lowest wear rate(~4.44×10^(−5)mm^(3)/(N·m)).Compared with bare ZL109 alloy,the mechanical and tribological properties of TiAlN coated alloy surface can effectively be improved.展开更多
Objective The high energy ion bombardment technique is applied to enhancing the adhesion of the tetrahedral amorphous carbon (TAC) films deposited by the filtered cathode vacuum arc (FCVA). Methods The abrasion method...Objective The high energy ion bombardment technique is applied to enhancing the adhesion of the tetrahedral amorphous carbon (TAC) films deposited by the filtered cathode vacuum arc (FCVA). Methods The abrasion method, scratch method, heating and shaking method as well as boiling salt solution method is used to test the adhesion of the TAC films on various material substrates. Results The test results show that the adhesion is increased as the ion bombardment energy increases. However, if the bombardment energy were over the corresponding optimum value, the adhesion would be enhanced very slowly for the harder material substrates and drops quickly, for the softer ones. Conclusion The optimum values of the ion bombardment energy are larger for the harder materials than that for the softer ones.展开更多
DLC super-hard films have been deposited on the substrates of single crystalline Si, pure Ti and stainless steel 18-8 by a method of vacuum cathode arc deposition (VCAD). The composition, microstructure and micro-hard...DLC super-hard films have been deposited on the substrates of single crystalline Si, pure Ti and stainless steel 18-8 by a method of vacuum cathode arc deposition (VCAD). The composition, microstructure and micro-hardness of the films have been studied in this paper. The results indicate that hardness of the DLC films is different on the different substrates. Hardness of the films increases with decreasing in surface roughness of the films. The maximum value of micro-hardness belongs to the DLC films deposited under the hydrogen pressure of 0.35Pa and the negative bias of 100V.展开更多
基金Project supported by the Enterprise Science and Technology Correspondent for Guangdong Province,China (Grant No.GDKTP2021015200)。
文摘For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process.In the article,the microstructure,optical and electrical of BTO and In_(2)O_(3) mixed transparent conductive BaInSnO_(x)(BITO)film deposited by filtered cathodic vacuum arc technique(FCVA)on glass substrate at room temperature were firstly reported.The BITO film with thickness of 300 nm had mainly In_(2)O_(3) polycrystalline phase,and minor polycrystalline BTO phase with(001),(011),(111),(002),(222)crystal faces which were first deposited at room temperature on amorphous glass.The transmittance was 70%–80%in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength.The basic optical properties included the real and imaginary parts,high frequency dielectric constants,the absorption coefficient,the Urbach energy,the indirect and direct band gaps,the oscillator and dispersion energies,the static refractive index and dielectric constant,the average oscillator wavelength,oscillator length strength,the linear and the third-order nonlinear optical susceptibilities,and the nonlinear refractive index were all calculated.The film was the n-type conductor with sheet resistance of 704.7Ω/□,resistivity of 0.02Ω⋅cm,mobility of 18.9 cm2/V⋅s,and carrier electron concentration of 1.6×10^(19) cm^(−3) at room temperature.The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.
基金supported by the National Key Research and Development Program of China(No.2016YFB0101206)the Science and Technology Program of Wuhu(No.2021hg11)the Natural Science Foundation of the Anhui Higher Education in Institutions of China(No.2022AH050300)。
文摘Filtered cathodic vacuum arc(FCVA)deposition is regarded as an important technique for the synthesis of tetrahedral amorphous carbon(ta-C)films due to its high ionization rate,high deposition rate and effective filtration of macroparticles.Probing the plasma characteristics of arc discharge contributes to understanding the deposition mechanism of ta-C films on a microscopic level.This work focuses on the plasma diagnosis of an FCVA discharge using a Langmuir dualprobe system with a discrete Fourier transform smoothing method.During the ta-C film deposition,the arc current of graphite cathodes and deposition pressure vary from 30 to 90 A and from 0.3 to 0.9 Pa,respectively.The plasma density increases with arc current but decreases with pressure.The carbon plasma density generated by the arc discharge is around the order of10^(10)cm^(-3).The electron temperature varies in the range of 2-3.5 eV.As the number of cathodic arc sources and the current of the focused magnetic coil increase,the plasma density increases.The ratio of the intensity of the D-Raman peak and G-Raman peak(I_(D)/I_(G))of the ta-C films increases with increasing plasma density,resulting in a decrease in film hardness.It is indicated that the mechanical properties of ta-C films depend not only on the ion energy but also on the carbon plasma density.
基金Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2009GB106004)
文摘ZrN/TiZrN multilayers are deposited by using the cathodic vacuum arc method with different substrate bias(from 0 to 800 V),using Ti and Zr plasma flows in residual N 2 atmosphere,combined with ion bombardment of sample surfaces.The effect of pulsed bias on the structure and properties of films is investigated.Microstructure of the coating is analyzed by X-ray diffraction(XRD),and scanning electron microscopy(SEM).In addition,nanohardness,Young's modulus,and scratch tests are performed.The experimental results show that the films exhibit a nanoscale multilayer structure consisting of TiZrN and ZrN phases.Solid solutions are formed for component TiZrN films.The dominant preferred orientation of TiZrN films is(111) and(220).At a pulsed bias of 200 V,the nanohardness and the adhesion strength of the ZrN/TiZrN multilayer reach a maximum of 38 GPa,and 78 N,respectively.The ZrN/TiZrN multilayer demonstrates an enhanced nanohardness compared with binary TiN and ZrN films deposited under equivalent conditions.
基金supported financially by National Natural Science Foundation of China(No.10735090)the National Magnetic Confinement Fusion Science Program(No.2009GB106004) Scientific and Technological Project of Beijing
文摘Ti-Al-N hard films have been prepared by cathodic arc deposition by using an unipolar pulsed bias.In the present study,Ti-Al-N films were deposited on stainless steel and silicon wafers.The deposition rate,micrograph,preferred orientation and composition were systematically investigated by usingx-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDX), and a scanning electron microscope(SEM).It is shown that substate bias duty cycle and frequency have a great effect on film structure.A simple explanation for the results is also presented.
基金This work was supported by the Fundamental Research Program of the Korea Institute of Materials Science(KIMS/PNK7000)the Fundamental R&D Program of the Ministry of Science,Information&Communication Technology(ICT)Future Planning in Republic of Korea.
文摘Tetrahedral amorphous carbon(ta‐C)has emerged as an excellent coating material for improving the reliability of application components under high normal loads.Herein,we present the results of our investigations regarding the mechanical and tribological properties of a 2‐μm‐thick multilayer ta‐C coating on high‐speed steel substrates.Multilayers composed of alternating soft and hard layers are fabricated using filtered a cathodic vacuum arc with alternating substrate bias voltages(0 and 100 V or 0 and 150 V).The thickness ratio is discovered to be 1:3 for the sp2‐rich and sp3‐rich layers.The results show that the hardness and elastic modulus of the multilayer ta‐C coatings increase with the sp3 content of the hard layer.The hardness reached approximately 37 GPa,whereas an improved toughness and a higher adhesion strength(>29 N)are obtained.The friction performance(μ=0.07)of the multilayer coating is similar to that of the single layer ta‐C thick coating,but the wear rate(0.13×10^(–6) mm^(3)/(N∙m))improved under a high load of 30 N.We further demonstrate the importance of the multilayer structure in suppressing crack propagation and increasing the resistance to plastic deformation(H3/E2)ratio.
文摘Carbon nitride films have been synthesized in a wide range of biases from 0 to -900 V by vacuum cathodic arc method. The N content was about 12.0-22.0 at. pct. Upon increasing the biases from 0 to -100 V, the N content increased from 15.0 to 22.0 at. pct which could be attributed to the knot-on effect. While the further increasing biases led to the gradual falling of the N content to 12.0 at. pct at -900 V due to the enhancement of the sputtering effect. Below -200 V, with the increasing biases the sp2C fraction in the films decreased, as a result of vvhich the I(D)/I(G) fell in the Raman spectra and the sp peaks also showed the decreasing tendency relative to the s peaks in the VBXPS (valence band X-ray photoelectron spectroscopy). While above -200 V, the sp2C fraction increased and the films became graphitinized gradually, accompanying which the I(D)/I(G) rose from -200 V to -300 V and the Raman spectra even shovved the graphite characteristic above -300 V and the sp peaks rose again relative to the s peak. The carbon nitride films mainly consist of three types of bonding: CC, sp2CN and sp3CN bonds. In the first stage the sp3CN relative ratio rises and falls in the second stage, which corresponded well with the variation of the sp2C in the films. The subpiantation mechanism resulting from the effect of ion energy played an important role in deciding'the variation of the microstructure of the carbon nitride films.
文摘A major obstacle to the broad application of cathodic arc plasma deposition is the presence of macroparticles. In this paper, the properties of the large rectangular arc ion plating with a magnetic filtering shutter system to filter macroparticles are studied. It is proposed that the macroparticles in the plasma beam are effectively removed with the magnetic filtering shutter system, and the quality of the deposited films is improved.
基金Hunan Provincial Natural Science Foundation,China(No.2021JJ30646)Educational Commission of Hunan Province,China(No.20B579)+1 种基金the National Natural Science Foundation of China(Nos.51701172,12027813)Innovation Team of Hunan Province,China(No.2018RS3091).
文摘TiAlN multilayer coatings composed of TiAl and TiAlN layers were deposited on ZL109 alloys using filtered cathodic vacuum arc(FCVA)technology.The effect of bias voltage on the microstructure and properties of the coating was systematically studied.The results show that the coating exhibits a multi-phase structure dominated by TiAlN phase.As the bias voltage increases,the orientation of TiAlN changes from(200)plane to(111)plane due to the increase of atomic mobility and lattice distortion.The hardness,elastic modulus and adhesion of the coating show the same trend of change,that is,first increase and then decrease.When the bias voltage is 75 V,the coating exhibits the highest hardness(~30.3 GPa),elastic modulus(~229.1 GPa),adhesion(HF 2)and the lowest wear rate(~4.44×10^(−5)mm^(3)/(N·m)).Compared with bare ZL109 alloy,the mechanical and tribological properties of TiAlN coated alloy surface can effectively be improved.
文摘Objective The high energy ion bombardment technique is applied to enhancing the adhesion of the tetrahedral amorphous carbon (TAC) films deposited by the filtered cathode vacuum arc (FCVA). Methods The abrasion method, scratch method, heating and shaking method as well as boiling salt solution method is used to test the adhesion of the TAC films on various material substrates. Results The test results show that the adhesion is increased as the ion bombardment energy increases. However, if the bombardment energy were over the corresponding optimum value, the adhesion would be enhanced very slowly for the harder material substrates and drops quickly, for the softer ones. Conclusion The optimum values of the ion bombardment energy are larger for the harder materials than that for the softer ones.
基金This work was supported by the Natural Science Foundation of Guangdong Province(990548)the Special Project for PhD Subject of the Education Ministry of China(1999056121)+1 种基金the Key Project of the Guangdong Provincial Nano-Materials Science&Technology Program(2001A1060404)the Key Project of the Guangdong Provincial Science&Technology Program(2KM00407G).
文摘DLC super-hard films have been deposited on the substrates of single crystalline Si, pure Ti and stainless steel 18-8 by a method of vacuum cathode arc deposition (VCAD). The composition, microstructure and micro-hardness of the films have been studied in this paper. The results indicate that hardness of the DLC films is different on the different substrates. Hardness of the films increases with decreasing in surface roughness of the films. The maximum value of micro-hardness belongs to the DLC films deposited under the hydrogen pressure of 0.35Pa and the negative bias of 100V.