Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-I(also named Cu-BTC or MOF-199) was...Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-I(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11% increase in adsorption capacity at 298 K and 18 bar as compared with HKUST- 1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.展开更多
Aqueous rechargeable Zn//MnO_(2)batteries show promising prospects for grid-scale energy storage due to their intrinsic safety,abundant resource,and potential high performance.Unfortunately,the real capability of thes...Aqueous rechargeable Zn//MnO_(2)batteries show promising prospects for grid-scale energy storage due to their intrinsic safety,abundant resource,and potential high performance.Unfortunately,the real capability of these devices is far from satisfactory thanks to the low capacity and sluggish kinetics of the MnO_(2)cathode.Herein,we report a dual cation doping strategy by synthesis of MnO_(2)in the presence of Ti_(3)_(2)X MXenes and Ni^(2+)ions to essentially address these drawbacks.Such a process contributes to a Ti,Ni co-dopedα-MnO_(2)anchored on MXenes.The Ti^(3+)ions incorporated in the framework allow a partial multivalent variation for a large capacity while the Ni^(2+)ions promote the H^(+)transfer within the MnO_(2)matrix via the Grotthuss proton transport manner.As a result,the optimal dual cation doped MnO_(2)exhibits a large reversible capacity of 378 mAh·g-1 at 0.1 C and a high rate capability.Moreover,capacity retention as high as 92%is observed after cycling at 4 C for 1000 times,far superior to many of the previously reported results.This facile strategy demonstrated here may shed new insight into the rational design of electrodes based on high-performance Zn//MnO_(2)batteries.展开更多
Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode ...Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode electrode materials.Here,we propose a dual synergic optimization strategy to enhance the K^(+)storage stability and reaction kinetics of Bi_(2)S_(3) through two-dimensional compositing and cation doping.Externally,Bi_(2)S_(3) nanoparticles are loaded onto the surface of three-dimensional interconnected Ti_(3)C_(2)T_(x) nanosheets to stabilize the electrode structure.Internally,Cu^(2+)doping acts as active sites to accelerate K^(+)storage kinetics.Various theoretical simulations and ex situ techniques are used to elucidate the external–internal dual synergism.During discharge,Ti_(3)C_(2)T_(x) and Cu^(2+)collaboratively facilitate K+intercalation.Subsequently,Cu^(2+)doping primarily promotes the fracture of Bi2S3 bonds,facilitating a conversion reaction.Throughout cycling,the Ti_(3)C_(2)T_(x) composite structure and Cu^(2+)doping sustain functionality.The resulting Cu^(2+)-doped Bi2S3 anchored on Ti_(3)C_(2)T_(x)(C-BT)shows excellent rate capability(600 mAh g^(-1) at 0.1 A g^(–1);105 mAh g^(-1) at 5.0 A g^(-1))and cycling performance(91 mAh g^(-1) at 5.0 A g^(-1) after 1000 cycles)in half cells and a high energy density(179 Wh kg–1)in full cells.展开更多
Cobalt was used to modify the surface of spinel LiMn2O4 by a solution technique to produce Co3+-modified surface material (COMSM). Cobalt was only doped into the surface of LiMn2O4 spinel. XPS(X-ray photoelectron spec...Cobalt was used to modify the surface of spinel LiMn2O4 by a solution technique to produce Co3+-modified surface material (COMSM). Cobalt was only doped into the surface of LiMn2O4 spinel. XPS(X-ray photoelectron spectroscopy) analysis confirms the valence state of Co3+. COMSM has stable spinel structure and can prevent active materials from the corrosion of electrolyte. The ICP(inductively coupled plasma) determination of the spinel dissolution in electrolyte showed the content of Mn dissolved from COMSM was smaller than that from the pure spinel. AC impedance patterns show that the charge-transfer resistance (Ret) for COMSM is smaller than that for pure spinel. The particles of COMSM are bigger in size than those of pure spinel according to the micrographs of SEM(scanning electron microscopy). The determinations of the electrochemical characterization show that COMSM has both good cycling performance and high initial capacity of 124.1 mA/h at an average capacity loss of 0.19 mAh/g per cycle.展开更多
The development of stable and efficient visible light-absorbing oxide-based semiconductor photocatalysts is a desirable task for solar water splitting applications.Recently,we proposed that the low photocurrent densit...The development of stable and efficient visible light-absorbing oxide-based semiconductor photocatalysts is a desirable task for solar water splitting applications.Recently,we proposed that the low photocurrent density in film-based BiFeO_(3)(BFO)is due to charge recombination at the interface of the domain walls,which could be largely reduced in particulate photocatalyst systems.To demonstrate this hypothesis,in this work we synthesized particulate BFO and Mn-doped BiFeO_(3)(Mn-BFO)by the sol-gel method.Photocatalytic water oxidation tests showed that pure BFO had an intrinsic photocatalytic oxygen evolution reaction(OER)activity of 70μmol h^(-1) g^(-1),while BFO-2,with an optimum amount of Mn doping(0.05%),showed an OER activity of 255μmol h^(-1) g^(-1) under visible light(λ≥420 nm)irradiation.The bandgap of Mn-doped BFO could be reduced from 2.1 to 1.36 eV by varying the amount of Mn doping.Density functional theory(DFT)calculations suggested that surface Fe(rather than Mn)species serve as the active sites for water oxidation,because the overpotential for water oxidation on Fe species after Mn doping is 0.51 V,which is the lowest value measured for the different Fe and Mn species examined in this study.The improved photocatalytic water oxidation activity of Mn-BFO is ascribed to the synergistic effect of the bandgap narrowing,which increases the absorption of visible light,reduces the activation energy of water oxidation,and inhibits the recombination of photogenerated charges.This work demonstrates that Mn doping is an effective strategy to enhance the intrinsic photocatalytic water oxidation activity of particulate ferroelectric BFO photocatalysts.展开更多
With significantly enhanced irradiation resistance,high-temperature strength,and creep resistance,oxide-dispersion-strengthened tungsten(ODS-W)alloys present tremendous potential for high-temperature applications.Howe...With significantly enhanced irradiation resistance,high-temperature strength,and creep resistance,oxide-dispersion-strengthened tungsten(ODS-W)alloys present tremendous potential for high-temperature applications.However,the oxide particles tend to segregate at W grain boundary and grow up(even to micron),greatly suppressing their strengthening effect.It is always a great challenge to effectively refine and disperse the oxide particles at W grain boundary.Here,we successfully developed a new type of cation-doped W-Y2O3 alloy via a wet chemical method and subsequent low-temperature sintering.It was found that proper cation doping could not only significantly refine the intergranular Y2O3 second phase particles but also dramatically improve the sinterability of W matrix.These doping effects,as a result,simultaneously enhance the strength and ductility of the W-Y2O3 alloy.It was confirmed that the segregation of cation dopants at the W/Y2O3 interface is the origin of these doping effects.Furthermore,X-ray photoemission spectra(XPS)analyses confirmed that cation dopant segregation also obviously affects the chemical bonding(i.e.,W–O bond)along the W/Y2O3 interface.As a result,the ratelimiting mechanism for W grain growth is influenced remarkably,explaining well the difference of W grain size in various cation-doped W-Y2O3 alloys.For the refinement of intergranular Y2O3 particles,it can be understood well from both thermodynamic and kinetic views.Detailedly,W/Y2O3 interfacial energy and atom mobility for Y2O3 coarsening are all limited by cation dopant segregation.More importantly,this cation-doping approach can also be applicable to other ODS alloys for enhancing their comprehensive mechanical properties.展开更多
Substitution of lead(Pb)with tin(Sn)is a very important way to reduce the bandgap of metal halide perovskite for applications in solar cells,and near infrared(NIR)light-emitting diodes(LEDs),etc.However,mixed Pb/Sn pe...Substitution of lead(Pb)with tin(Sn)is a very important way to reduce the bandgap of metal halide perovskite for applications in solar cells,and near infrared(NIR)light-emitting diodes(LEDs),etc.However,mixed Pb/Sn perovskite becomes very disordered with high trap density when the Sn molar ratio is less than 20%.This limits the applications of mixed Pb/Sn perovskites in optoelectronic devices such as wavelength tunable NIR perovskite LEDs(Pe LEDs).In this work,we demonstrate that alkali cations doping can release the microstrain and passivate the traps in mixed Pb/Sn perovskites with Sn molar ratios of less than 20%,leading to higher carrier lifetime and photoluminescence quantum yield(PLQY).The external quantum efficiency(EQE)of Sn_(0.2)Pb_(0.8)-based NIR Pe LEDs is dramatically enhanced from 0.1%to a record value of 9.6%(emission wavelength:868 nm).This work provides a way of making high quality mixed Pb/Sn optoelectronic devices with small Sn molar ratios.展开更多
Comprehensive Summary Inorganic lead halide perovskite(LHP)nanostructures,represented by formula CsPbX3(X=Cl,Br,I),have garnered considerable interest for their exceptional optical properties and diverse applications....Comprehensive Summary Inorganic lead halide perovskite(LHP)nanostructures,represented by formula CsPbX3(X=Cl,Br,I),have garnered considerable interest for their exceptional optical properties and diverse applications.Despite their potential,challenges such as environmental degradation persist.In-situ synthesis within protective materials pores is a promising way to address this issue.However,confining perovskite nanostructures into porous matrices during the synthesis can limit their photoluminescence quantum yield(PL QY)and tunability of optical properties.Various post-treatment approaches exist to improve the properties of LHP and achieve their desired functionalities,but these strategies have not been explored for LHP confined in mesoporous matrices.Here,we demonstrate the efficacy of in-situ post-synthetic treatments to improve the optical properties of CsPbBr3 nanocrystals grown in nanoporous silica microspheres.Surface passivation with Br–ion-containing precursors boosts PL QY,while anion-assisted cation doping with Mn2+ions introduces a new PL band.The adjustment of precursor amount and doping duration enables precise control over the optical properties of LHP,while additional coating with a SiO2 shell enhances their stability in polar solvents,expanding the potential applications of these composites.展开更多
The rational modification of perovskite oxides(ABO3−δ)is essential to improve the efficiency and stability of oxygen electrolysis.Surface engineering represents a facile approach to modify perovskites for enhanced pe...The rational modification of perovskite oxides(ABO3−δ)is essential to improve the efficiency and stability of oxygen electrolysis.Surface engineering represents a facile approach to modify perovskites for enhanced performance.Through compositional design and in situ exsolution,a Ru-doped(La_(0.8)Sr_(0.2))_(0.9)Co_(0.1)Fe_(0.8)Ru_(0.1)O_(3−δ)(LSCFR)perovskite anchored with CoFe(Ru)alloy particles on the surface was fabricated for oxygen evolution reaction(OER)in this work.Experimental results and calculations indicate that Ru-doping promotes the exsolution of CoFe(Ru)from the perovskite parent.Upon exsolution in the reduced atmosphere for 3 h,the catalyst(LSCFR-3)exhibited superior OER performance with an overpotential of 347 mV and a Tafel slope of 54.65 mV·dec^(−1),and showed good stability in contrast to the pristine LSCFR.The exsolution of CoFe(Ru)particles,Ru doping,and the increase of surface oxygen vacancies are responsible for the enhancement of OER performance.The findings obtained in this study highlight the possibility of controlling exsolution and composition of nanoparticles by element doping and prove that in situ exsolution is an effective strategy for designing OER catalysts.展开更多
文摘Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-I(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11% increase in adsorption capacity at 298 K and 18 bar as compared with HKUST- 1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21975258,22179145,22005341,and 21878336)the startup support grant from China University of Petroleum(East China)Shandong Provincial Natural Science Foundation(Nos.ZR2020ZD08 and ZR2018ZC1458).
文摘Aqueous rechargeable Zn//MnO_(2)batteries show promising prospects for grid-scale energy storage due to their intrinsic safety,abundant resource,and potential high performance.Unfortunately,the real capability of these devices is far from satisfactory thanks to the low capacity and sluggish kinetics of the MnO_(2)cathode.Herein,we report a dual cation doping strategy by synthesis of MnO_(2)in the presence of Ti_(3)_(2)X MXenes and Ni^(2+)ions to essentially address these drawbacks.Such a process contributes to a Ti,Ni co-dopedα-MnO_(2)anchored on MXenes.The Ti^(3+)ions incorporated in the framework allow a partial multivalent variation for a large capacity while the Ni^(2+)ions promote the H^(+)transfer within the MnO_(2)matrix via the Grotthuss proton transport manner.As a result,the optimal dual cation doped MnO_(2)exhibits a large reversible capacity of 378 mAh·g-1 at 0.1 C and a high rate capability.Moreover,capacity retention as high as 92%is observed after cycling at 4 C for 1000 times,far superior to many of the previously reported results.This facile strategy demonstrated here may shed new insight into the rational design of electrodes based on high-performance Zn//MnO_(2)batteries.
基金This work received financial support from the National Natural Science Foundation of China(Grant Nos.U23A20574,52250010,and 52201242)the 261 Project MIIT,the Young Elite Scientists Sponsorship Program by CAST(Grant No.2021QNRC001)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2242022R40018)the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2022ZB75).
文摘Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode electrode materials.Here,we propose a dual synergic optimization strategy to enhance the K^(+)storage stability and reaction kinetics of Bi_(2)S_(3) through two-dimensional compositing and cation doping.Externally,Bi_(2)S_(3) nanoparticles are loaded onto the surface of three-dimensional interconnected Ti_(3)C_(2)T_(x) nanosheets to stabilize the electrode structure.Internally,Cu^(2+)doping acts as active sites to accelerate K^(+)storage kinetics.Various theoretical simulations and ex situ techniques are used to elucidate the external–internal dual synergism.During discharge,Ti_(3)C_(2)T_(x) and Cu^(2+)collaboratively facilitate K+intercalation.Subsequently,Cu^(2+)doping primarily promotes the fracture of Bi2S3 bonds,facilitating a conversion reaction.Throughout cycling,the Ti_(3)C_(2)T_(x) composite structure and Cu^(2+)doping sustain functionality.The resulting Cu^(2+)-doped Bi2S3 anchored on Ti_(3)C_(2)T_(x)(C-BT)shows excellent rate capability(600 mAh g^(-1) at 0.1 A g^(–1);105 mAh g^(-1) at 5.0 A g^(-1))and cycling performance(91 mAh g^(-1) at 5.0 A g^(-1) after 1000 cycles)in half cells and a high energy density(179 Wh kg–1)in full cells.
基金supported by the Basic Research Fund of Tsinghua University under grant No.JC1999054‘985’Project of School of Materials Science and Engineering of Tsinghua Universitythe Scientific Fund of the Education Committee of Fujian Province.
文摘Cobalt was used to modify the surface of spinel LiMn2O4 by a solution technique to produce Co3+-modified surface material (COMSM). Cobalt was only doped into the surface of LiMn2O4 spinel. XPS(X-ray photoelectron spectroscopy) analysis confirms the valence state of Co3+. COMSM has stable spinel structure and can prevent active materials from the corrosion of electrolyte. The ICP(inductively coupled plasma) determination of the spinel dissolution in electrolyte showed the content of Mn dissolved from COMSM was smaller than that from the pure spinel. AC impedance patterns show that the charge-transfer resistance (Ret) for COMSM is smaller than that for pure spinel. The particles of COMSM are bigger in size than those of pure spinel according to the micrographs of SEM(scanning electron microscopy). The determinations of the electrochemical characterization show that COMSM has both good cycling performance and high initial capacity of 124.1 mA/h at an average capacity loss of 0.19 mAh/g per cycle.
文摘The development of stable and efficient visible light-absorbing oxide-based semiconductor photocatalysts is a desirable task for solar water splitting applications.Recently,we proposed that the low photocurrent density in film-based BiFeO_(3)(BFO)is due to charge recombination at the interface of the domain walls,which could be largely reduced in particulate photocatalyst systems.To demonstrate this hypothesis,in this work we synthesized particulate BFO and Mn-doped BiFeO_(3)(Mn-BFO)by the sol-gel method.Photocatalytic water oxidation tests showed that pure BFO had an intrinsic photocatalytic oxygen evolution reaction(OER)activity of 70μmol h^(-1) g^(-1),while BFO-2,with an optimum amount of Mn doping(0.05%),showed an OER activity of 255μmol h^(-1) g^(-1) under visible light(λ≥420 nm)irradiation.The bandgap of Mn-doped BFO could be reduced from 2.1 to 1.36 eV by varying the amount of Mn doping.Density functional theory(DFT)calculations suggested that surface Fe(rather than Mn)species serve as the active sites for water oxidation,because the overpotential for water oxidation on Fe species after Mn doping is 0.51 V,which is the lowest value measured for the different Fe and Mn species examined in this study.The improved photocatalytic water oxidation activity of Mn-BFO is ascribed to the synergistic effect of the bandgap narrowing,which increases the absorption of visible light,reduces the activation energy of water oxidation,and inhibits the recombination of photogenerated charges.This work demonstrates that Mn doping is an effective strategy to enhance the intrinsic photocatalytic water oxidation activity of particulate ferroelectric BFO photocatalysts.
基金the National Natural Science Foundation of China(51822404)the Science and Technology Program of Tianjin(19YFZCGX00790 and 18YFZCGX00070)+1 种基金the Natural Science Foundation of Tianjin(18JCYBJC17900)the Seed Foundation of Tianjin University(2018XRX-0005)。
文摘With significantly enhanced irradiation resistance,high-temperature strength,and creep resistance,oxide-dispersion-strengthened tungsten(ODS-W)alloys present tremendous potential for high-temperature applications.However,the oxide particles tend to segregate at W grain boundary and grow up(even to micron),greatly suppressing their strengthening effect.It is always a great challenge to effectively refine and disperse the oxide particles at W grain boundary.Here,we successfully developed a new type of cation-doped W-Y2O3 alloy via a wet chemical method and subsequent low-temperature sintering.It was found that proper cation doping could not only significantly refine the intergranular Y2O3 second phase particles but also dramatically improve the sinterability of W matrix.These doping effects,as a result,simultaneously enhance the strength and ductility of the W-Y2O3 alloy.It was confirmed that the segregation of cation dopants at the W/Y2O3 interface is the origin of these doping effects.Furthermore,X-ray photoemission spectra(XPS)analyses confirmed that cation dopant segregation also obviously affects the chemical bonding(i.e.,W–O bond)along the W/Y2O3 interface.As a result,the ratelimiting mechanism for W grain growth is influenced remarkably,explaining well the difference of W grain size in various cation-doped W-Y2O3 alloys.For the refinement of intergranular Y2O3 particles,it can be understood well from both thermodynamic and kinetic views.Detailedly,W/Y2O3 interfacial energy and atom mobility for Y2O3 coarsening are all limited by cation dopant segregation.More importantly,this cation-doping approach can also be applicable to other ODS alloys for enhancing their comprehensive mechanical properties.
基金the financial support of the National Natural Science Foundation of China(51872161)Major Program of Shandong Provincial Natural Science Foundation(ZR2017ZB0316)+3 种基金the financial support of the National Natural Science Foundation of China(51872274)the Fundamental Research Funds for the Central Universities(WK2060190100)the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,and 21961160720)for financial support。
文摘Substitution of lead(Pb)with tin(Sn)is a very important way to reduce the bandgap of metal halide perovskite for applications in solar cells,and near infrared(NIR)light-emitting diodes(LEDs),etc.However,mixed Pb/Sn perovskite becomes very disordered with high trap density when the Sn molar ratio is less than 20%.This limits the applications of mixed Pb/Sn perovskites in optoelectronic devices such as wavelength tunable NIR perovskite LEDs(Pe LEDs).In this work,we demonstrate that alkali cations doping can release the microstrain and passivate the traps in mixed Pb/Sn perovskites with Sn molar ratios of less than 20%,leading to higher carrier lifetime and photoluminescence quantum yield(PLQY).The external quantum efficiency(EQE)of Sn_(0.2)Pb_(0.8)-based NIR Pe LEDs is dramatically enhanced from 0.1%to a record value of 9.6%(emission wavelength:868 nm).This work provides a way of making high quality mixed Pb/Sn optoelectronic devices with small Sn molar ratios.
基金supported by the National Natural Science Foundation of China(52102185)Jiangsu Provincial Department of Science and Technology leading technology basic research major project(Grant No.BK20232041)+1 种基金the Russian Science Foundation(21-73-10131)SEM studies were performed on equipment of the“Interdisciplinary Resource Centre for Nanotechnology”of the St.Petersburg State University Research Park(project AAAA-A19-119091190094-6).
文摘Comprehensive Summary Inorganic lead halide perovskite(LHP)nanostructures,represented by formula CsPbX3(X=Cl,Br,I),have garnered considerable interest for their exceptional optical properties and diverse applications.Despite their potential,challenges such as environmental degradation persist.In-situ synthesis within protective materials pores is a promising way to address this issue.However,confining perovskite nanostructures into porous matrices during the synthesis can limit their photoluminescence quantum yield(PL QY)and tunability of optical properties.Various post-treatment approaches exist to improve the properties of LHP and achieve their desired functionalities,but these strategies have not been explored for LHP confined in mesoporous matrices.Here,we demonstrate the efficacy of in-situ post-synthetic treatments to improve the optical properties of CsPbBr3 nanocrystals grown in nanoporous silica microspheres.Surface passivation with Br–ion-containing precursors boosts PL QY,while anion-assisted cation doping with Mn2+ions introduces a new PL band.The adjustment of precursor amount and doping duration enables precise control over the optical properties of LHP,while additional coating with a SiO2 shell enhances their stability in polar solvents,expanding the potential applications of these composites.
基金the National Natural Science Foundation of China(No.51901161)Natural Science Foundation of Guangdong Province(No.2021A1515011955)+2 种基金College Innovation Team Project of Guangdong Province(No.2021KCXTD042)Major Projects of Guangdong Education Department for Foundation Research and Applied Research(No.2020ZDZX2063)Wuyi University-Hong Kong-Macao Joint Research and Development Fund(No.2019WGALH06).
文摘The rational modification of perovskite oxides(ABO3−δ)is essential to improve the efficiency and stability of oxygen electrolysis.Surface engineering represents a facile approach to modify perovskites for enhanced performance.Through compositional design and in situ exsolution,a Ru-doped(La_(0.8)Sr_(0.2))_(0.9)Co_(0.1)Fe_(0.8)Ru_(0.1)O_(3−δ)(LSCFR)perovskite anchored with CoFe(Ru)alloy particles on the surface was fabricated for oxygen evolution reaction(OER)in this work.Experimental results and calculations indicate that Ru-doping promotes the exsolution of CoFe(Ru)from the perovskite parent.Upon exsolution in the reduced atmosphere for 3 h,the catalyst(LSCFR-3)exhibited superior OER performance with an overpotential of 347 mV and a Tafel slope of 54.65 mV·dec^(−1),and showed good stability in contrast to the pristine LSCFR.The exsolution of CoFe(Ru)particles,Ru doping,and the increase of surface oxygen vacancies are responsible for the enhancement of OER performance.The findings obtained in this study highlight the possibility of controlling exsolution and composition of nanoparticles by element doping and prove that in situ exsolution is an effective strategy for designing OER catalysts.