Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between ...Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between female goats and dairy cows, this study was conducted to evaluate the effects of varying DCAD on fluid acid-base status, plasma minerals concentration and anti-oxidative stress capacity of female goats. Urinary pH, plasma Ca, P and Mg; and anti-oxidative stress indices of total superoxide dismutase (T-SOD), hydrogen peroxide (HzO2), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were determined to evaluate the effect. Forty-eight Guizhou black female goats ((15±1.9) mon of old, (22.3±3.75) kg of BW) were randomly allocated to 4 blocks of 12 goats each and were fed 1 of 4 diets differed in DCAD level (calculated as Na+K-C1-S, mEq kg-1 DM). Levels of DCAD were preliminarily designed to be control (+ 150 mEq kg^-1 DM, CON), high DCAD (+300 mEq kg^-1 DM, HD), low DCAD (0 mEq kg^-1 DM, LD) and negative DCAD (-150 mEq kg^-1 DM, ND), respectively. A commercial anionic salts (Animate) and sodium bicarbonate (NaHCO3) were supplemented to reduce and increase DCAD level, respectively. There was no difference in dry matter intake for 4 groups of goats. Urine pH was aggressively decreased (P〈0.0001) with reduced DCAD and there was a strong association between DCAD and urine pH (R2=0.793, P〈0.0001). Compared with CON and HD feeding of LD and ND resulted in greater (P〈0.05) plasma Ca concentration. Plasma P level was increased (P〈0.05) when anionic salts were supplemented. The DCAD alteration did not affected (P〉0.05) plasma Mg level. There was no significant (P〉0.05) difference in plasma GSH-Px activity and H202, but anionic salts supplementation in LD and ND significantly increased (P〈0.05) plasma T-SOD activity and tended to reduce MDA (P〈0.1) over HD and CON. Results from this study indicated that reducing DCAD could decrease urine pH and increase plasma Ca concentration of female goats. Additionally, reducing DCAD was helpful to enhance anti-oxidative stress capability of female goats.展开更多
The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appear...The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(Δ H 0, Δ S 0) of those proteins were determined by means of Vant Hoff relationship(ln k -1/ T ). According to standard entropy change(Δ S 0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between Δ H 0 and Δ S 0 can be used to evaluate 'compensation temperature'( β ) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.展开更多
Using density functional theory computation, we show that sodium ions and hydrated sodium ions can be strongly adsorbed onto a hydrophobic graphite surface via cation-π interactions. The key to this eation-π interac...Using density functional theory computation, we show that sodium ions and hydrated sodium ions can be strongly adsorbed onto a hydrophobic graphite surface via cation-π interactions. The key to this eation-π interaction is the coupling of the delocalized π states of graphite and the empty orbitals of sodium ions. This finding implies that the property of the graphite surface is extremely dependent on the existence of the ions on the surface, suggesting that the hydrophobic property of the graphite surface may be affected by the existence of the sodium ions.展开更多
The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic ...The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic process. On the basis of the proposed mechanism, an equation was derived for correlating distribution coefficient, Kd, dissociation constant, Aa, and adsorption equilibrium constant, K, of the analyzed acid. By this approach, retention data for some aliphatic acids under different operating conditions were predicted. Results are reasonably in agreement with experiment.展开更多
A sensitive method for the determination of ephedrine and codeine in human urine by capillary electrophoresis (CE) was described. In order to improve the sensitivity, two online concentration techniques including ca...A sensitive method for the determination of ephedrine and codeine in human urine by capillary electrophoresis (CE) was described. In order to improve the sensitivity, two online concentration techniques including cation-selective exhaustive injection (CSEI) and sweeping micellar electrokinetic chromatography (sweeping-MEKC) were used. Under the optimum conditions, the detection limits (S/N = 3) were 0.10 μg/L for ephedrine and 0.80 μg/L for codeine. This method was successfully applied to real urine sample analysis.展开更多
An empirical solution to abnormal potential responses, showing peaks of emf, of commercial Cu2+- and Cd2+-selective electrodes with solid-state membranes was proposed for aqueous solutions of CuCl2 and CdI2. The two-s...An empirical solution to abnormal potential responses, showing peaks of emf, of commercial Cu2+- and Cd2+-selective electrodes with solid-state membranes was proposed for aqueous solutions of CuCl2 and CdI2. The two-step processes of Mn+ + Yn? (s: solid phase) MY(s) and MY(s) + 2X? X2MY2?(s) (n = 1, 2) at a test solution/electrode-interface were considered as a model. Here, Mn+, Yn?, and X? refer to a divalent or univalent cation, functional groups of electrode materials, and a halide ion (X? = Cl?, Br?, I?), respectively. By applying electrochemical potentials to these processes at n = 2, we derived an equation. Regression analyses based on the equation reproduced well the plots of emf versus log 2(*[M]t) for the Cd(II) and Cu(II) systems: *[M]t denotes a total concentration of species relevant to M2+ in a bulk of the aqueous solution. Also, we obtained log Ks(CdBr2) = 4.28 ? 0.22, log Ks(CdI2) = 6.98 ? 0.05, log Ks(CuCl2) = 3.96 ? 0.09, and log Ks(CuBr2) = 11.4 at 25?C. The magnitude in ?log Ks reflected that in the logarithmic solubility product, log {*[M2+](*[X?])2}, for bulk water, where *[M2+] or *[X?] denotes a molar concentration of the bulk solu-tion of M2+ or X? at equilibrium, respectively. Moreover, a mixture of CuSO4 with NaCl at the molar ratio of 1:1 yielded a plot similar to that of CuCl2.展开更多
In the present context, the objective of this study was to synthesize and analyze the content of AA of macadamia protein and the impact of hydrogen ion concentration (pH) on AA composition. The determination of AA mai...In the present context, the objective of this study was to synthesize and analyze the content of AA of macadamia protein and the impact of hydrogen ion concentration (pH) on AA composition. The determination of AA mainly by cation-exchange chromatography was also investigated. Reproducible and reliable techniques for quantification and identification of AA usually require derivatization. However, techniques such as AA analyzer are composed of cation-exchange chromatography and other components can sideline the derivatization with significant accuracy. The present analysis revealed a higher concentration of essential amino acids especially acidic AA, Glu and Asp and basic AA, Arg than other AA in macadamia protein. The study constitutes first report of use of bubble chart for evaluation of AA and explaination of AAS. The results may elaborate that the degradation of AA of macadamia protein for extraction of pH 11 is caused by the impact of pH. Moreover, the nutritional values of AA present in macadamia protein could change for the better by adjusting pH of extraction.展开更多
The diffusion permeability through new hybrid materials based on a Nafion-type membrane (MF- 4SC) and nanotubes of halloysite is investigated using the Nernst-Planck approach. A method of quantitative evaluation of ph...The diffusion permeability through new hybrid materials based on a Nafion-type membrane (MF- 4SC) and nanotubes of halloysite is investigated using the Nernst-Planck approach. A method of quantitative evaluation of physicochemical parameters (averaged and individual diffusion coefficients and averaged distribution coefficients of ion pairs in the membrane) of system “electrolyte solution—ion-exchange membrane—water”, which was proposed earlier, is further developed. The parameters of hybrid membranes on the base of MF-4SC and nanotubes of halloysite (5% wt and 8% wt) are obtained from experimental data on diffusion permeability of NaCl solutions using theoretical calculations. New model of three-layer membrane system can be used for refining calculated results with taking into account both diffusive layers. It is shown that adding of halloysite nanotubes into the membrane volume noticeably affects exchange capacity as well as structural and transport characteristics of original perfluorinated membranes. Hybrid membranes on the base of MF-4SC and halloysite nanotubes can be used in fuel cells and catalysis.展开更多
Poly(vinyl phosphonic acid-co-glycidyl methacrylate-co-divinyl benzene) (PVGD) and PVGD containing an iminodi-acetic acid group (IPVGD), which has indium ion selectivity, were synthesized by suspension polymerization,...Poly(vinyl phosphonic acid-co-glycidyl methacrylate-co-divinyl benzene) (PVGD) and PVGD containing an iminodi-acetic acid group (IPVGD), which has indium ion selectivity, were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The synthesized PVGD and IPVGD resins were characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and mercury porosimetry. The cation-exchange capacity, the water uptake and the indium adsorption properties were investigated. The cation-exchange capacities of PVGD and IPVGD were 1.2 - 4.5 meq/g and 2.5 - 6.4 meq/g, respectively. The water uptakes were decreased with increasing contents of divinyl benzene (DVB). The water uptake values were 25% - 40% and 20% - 35%, respectively. The optimum adsorption of indium from a pure indium solution and an artificial indium tin oxide (ITO) solution by the PVGD and IPVGD ion-exchange resins were 2.3 and 3.5 meq/g, respectively. The indium adsorption capacities of IPVGD were higher than those of PVGD. The indium ion adsorption selectivity in the artificial ITO solution by PVGD and IPVGD was excellent, and other ions were adsorbed only slightly.展开更多
Designing cost-effective and high-performing metal catalysts is significant for many renewable energy conversion technologies.Lowering metal loading without sacrificing activity and durability is highly desired for th...Designing cost-effective and high-performing metal catalysts is significant for many renewable energy conversion technologies.Lowering metal loading without sacrificing activity and durability is highly desired for the catalyst design,especially for those reactions where the noble metals deliver the best catalyzing performance.Single-atom catalysts(SACs)with maximal metalatom utilization,homogeneous and tailorable active sites have emerged as promising catalyst candidates,where the local coordination structures of the metal atoms in SACs largely determine the reaction kinetics.Previous design strategies of constructing strong metal-support interactions can stabilize the individual metal atoms in SACs,but present obstacles to provide a flexible manipulation platform for elaborately tailoring the coordination structures to achieve performance optimization towards a specifically targeted reaction.Here,for the proof-of-concept study,we report a novel design of SAC with iridium(Ir)single atoms supported on conjugated polymer,in which the adsorption energies of reaction intermediates on Ir atoms and the reaction kinetics towards acidic water oxidation can be readily optimized through modulating the formed cation-πinteractions that can be tailored by adjusting the molecular structures of conjugated polymers.This strategy establishes a general route to develop targeted SACs for various catalytic reactions.展开更多
Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen...Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.展开更多
The M2 protein from influenza A virus is a tetrameric ion channel. It was reported that the permeation of the ion channel is correlated with the hydrogen bond network among His37 residues and the cation-π interaction...The M2 protein from influenza A virus is a tetrameric ion channel. It was reported that the permeation of the ion channel is correlated with the hydrogen bond network among His37 residues and the cation-π interactions between His37 and Trp41. In the present study,the hydrogen bonding network of 4-methyl-imidazoles was built to mimic the hydrogen bonds between His37 residues,and the cation-π interactions between 4-methyl-imidazolium and indole systems were selected to represent the interac-tions between His37 and Trp41. Then,quantum chemistry calculations at the MP2/6-311G level were carried out to explore the properties of the hydrogen bonds and the cation-π interactions. The calcula-tion results indicate that the binding strength of the N-H···N hydrogen bond between imidazole rings is up to -6.22 kcal·mol-1,and the binding strength of the strongest cation-π interaction is up to -18.8 kcal·mol-1(T-shaped interaction) or -12.3 kcal·mol-1(parallel stacking interaction). Thus,the calcu-lated binding energies indicate that it is possible to control the permeation of the M2 ion channel through the hydrogen bond network and the cation-π interactions by altering the pH values.展开更多
The cation-p interaction between the aromatic organic counterion potassium hydrogen phthalate (KHP) and DTAB micelle in aqueous mixture of EG was investigated, using the techniques of conductivity measurements, UV abs...The cation-p interaction between the aromatic organic counterion potassium hydrogen phthalate (KHP) and DTAB micelle in aqueous mixture of EG was investigated, using the techniques of conductivity measurements, UV absorption spectrum and NMR spectrum. The conductivity and UV spectrum studies were with respect to the effect of KHP on DTAB and that of DTAB micelle on KHP, respectively. According to the chemical shift changes of the aromatic ring and the surfactant methylene protons, it can be assumed that KHP penetrated into DTAB micelle with its carboxylic group protruding out of the micellar surface. And the strength of the interaction became weaker with the content of EG in the mixed solvent increasing.展开更多
Cation-πinteraction is considered one of the strongest noncovalent interactions in aqueous solutions,which endows natural biomolecules(e.g.,proteins)with robust wet adhesion and cohesion in humid/underwater environme...Cation-πinteraction is considered one of the strongest noncovalent interactions in aqueous solutions,which endows natural biomolecules(e.g.,proteins)with robust wet adhesion and cohesion in humid/underwater environments.However,it remains a challenge to construct synthetic functional materials(e.g.,self-healing hydrogels)by adopting the cation-πinteractions rationally.Herein,we present a facile and novel strategy to fabricate injectable self-healing synthetic hydrogel from self-assembly of a thermoresponsive ABA triblock copolymer via cation-πinteractions.展开更多
Two sulphur-containing 4-aminonaphthalimide derivatives were investigated as Hg2+ fluorescent chemosensors. In CH3CN, both sensors present a remarkable fluorescence enhancement to Cu2+ and Fe3+, but a selective flu...Two sulphur-containing 4-aminonaphthalimide derivatives were investigated as Hg2+ fluorescent chemosensors. In CH3CN, both sensors present a remarkable fluorescence enhancement to Cu2+ and Fe3+, but a selective fluorescence quenching to Hg2+ among the other metal ions. A cation-π interaction between Hg〉 and the naphthalimide moiety was proposed and confirmed By the density tunetional theory(DFT).展开更多
Herein, a low-cost, biodegradable, and high-performance microwave shielding graphite/starch material was fabricated via constructing a cation-π interaction between ammonium ions and graphite. The graphite flakes and ...Herein, a low-cost, biodegradable, and high-performance microwave shielding graphite/starch material was fabricated via constructing a cation-π interaction between ammonium ions and graphite. The graphite flakes and starch were firstly mixed with distilled water containing ammonium hydroxide to form graphite/starch slurry under an ultrasonic assistant. The cation-π interaction could improve delamination degree and dispersion of graphite in starch matrix. The slurry was first used as a coating material on the surface of wood and paper to develop shielding packages. The effect of coating thickness and coating layers on EM shielding property of the materials was investigated. Second, the composites with a high orientation of graphite were fabricated by compression at high pressures. The electrical conductivity and EM shielding effectiveness(SET) of the materials were greatly enhanced by construction of cation-πinteraction and orientation of graphite. Specifically, the EM SETvalues increased from 56.9 to 66.8 d B for the composites with 50 wt.% graphite and 2.0 mm in thickness by constructing cation-π interaction. The EM SETvalues raised from 17.4 to 66.8 d B via the graphite orientation in the materials with the same components and thickness. The shielding mechanism of the compressed composites with orientation dispersion of graphite was also discussed in comparison to the coating layer with random dispersion of graphite.展开更多
基金funded by the National Natural Science Foundation of China (30901038, 31160468)the State Key Laboratory of Animal Nutrition, Ministry of Science and Technology, China (2004DA125184F1115)the Key Technology Research and Development Program of Guizhou Province, China ([2009]3085)
文摘Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between female goats and dairy cows, this study was conducted to evaluate the effects of varying DCAD on fluid acid-base status, plasma minerals concentration and anti-oxidative stress capacity of female goats. Urinary pH, plasma Ca, P and Mg; and anti-oxidative stress indices of total superoxide dismutase (T-SOD), hydrogen peroxide (HzO2), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were determined to evaluate the effect. Forty-eight Guizhou black female goats ((15±1.9) mon of old, (22.3±3.75) kg of BW) were randomly allocated to 4 blocks of 12 goats each and were fed 1 of 4 diets differed in DCAD level (calculated as Na+K-C1-S, mEq kg-1 DM). Levels of DCAD were preliminarily designed to be control (+ 150 mEq kg^-1 DM, CON), high DCAD (+300 mEq kg^-1 DM, HD), low DCAD (0 mEq kg^-1 DM, LD) and negative DCAD (-150 mEq kg^-1 DM, ND), respectively. A commercial anionic salts (Animate) and sodium bicarbonate (NaHCO3) were supplemented to reduce and increase DCAD level, respectively. There was no difference in dry matter intake for 4 groups of goats. Urine pH was aggressively decreased (P〈0.0001) with reduced DCAD and there was a strong association between DCAD and urine pH (R2=0.793, P〈0.0001). Compared with CON and HD feeding of LD and ND resulted in greater (P〈0.05) plasma Ca concentration. Plasma P level was increased (P〈0.05) when anionic salts were supplemented. The DCAD alteration did not affected (P〉0.05) plasma Mg level. There was no significant (P〉0.05) difference in plasma GSH-Px activity and H202, but anionic salts supplementation in LD and ND significantly increased (P〈0.05) plasma T-SOD activity and tended to reduce MDA (P〈0.1) over HD and CON. Results from this study indicated that reducing DCAD could decrease urine pH and increase plasma Ca concentration of female goats. Additionally, reducing DCAD was helpful to enhance anti-oxidative stress capability of female goats.
基金Supported by Shaan xi Provincial Scientific- Comm ittee( 96 H0 9)
文摘The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(Δ H 0, Δ S 0) of those proteins were determined by means of Vant Hoff relationship(ln k -1/ T ). According to standard entropy change(Δ S 0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between Δ H 0 and Δ S 0 can be used to evaluate 'compensation temperature'( β ) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674146 and 10825520)the National Basic Research Program of China (Grant No. 2007CB936000)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘Using density functional theory computation, we show that sodium ions and hydrated sodium ions can be strongly adsorbed onto a hydrophobic graphite surface via cation-π interactions. The key to this eation-π interaction is the coupling of the delocalized π states of graphite and the empty orbitals of sodium ions. This finding implies that the property of the graphite surface is extremely dependent on the existence of the ions on the surface, suggesting that the hydrophobic property of the graphite surface may be affected by the existence of the sodium ions.
文摘The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic process. On the basis of the proposed mechanism, an equation was derived for correlating distribution coefficient, Kd, dissociation constant, Aa, and adsorption equilibrium constant, K, of the analyzed acid. By this approach, retention data for some aliphatic acids under different operating conditions were predicted. Results are reasonably in agreement with experiment.
基金supported by the Guangxi Provincial Foundation of Natural Science(No.0481019).
文摘A sensitive method for the determination of ephedrine and codeine in human urine by capillary electrophoresis (CE) was described. In order to improve the sensitivity, two online concentration techniques including cation-selective exhaustive injection (CSEI) and sweeping micellar electrokinetic chromatography (sweeping-MEKC) were used. Under the optimum conditions, the detection limits (S/N = 3) were 0.10 μg/L for ephedrine and 0.80 μg/L for codeine. This method was successfully applied to real urine sample analysis.
文摘An empirical solution to abnormal potential responses, showing peaks of emf, of commercial Cu2+- and Cd2+-selective electrodes with solid-state membranes was proposed for aqueous solutions of CuCl2 and CdI2. The two-step processes of Mn+ + Yn? (s: solid phase) MY(s) and MY(s) + 2X? X2MY2?(s) (n = 1, 2) at a test solution/electrode-interface were considered as a model. Here, Mn+, Yn?, and X? refer to a divalent or univalent cation, functional groups of electrode materials, and a halide ion (X? = Cl?, Br?, I?), respectively. By applying electrochemical potentials to these processes at n = 2, we derived an equation. Regression analyses based on the equation reproduced well the plots of emf versus log 2(*[M]t) for the Cd(II) and Cu(II) systems: *[M]t denotes a total concentration of species relevant to M2+ in a bulk of the aqueous solution. Also, we obtained log Ks(CdBr2) = 4.28 ? 0.22, log Ks(CdI2) = 6.98 ? 0.05, log Ks(CuCl2) = 3.96 ? 0.09, and log Ks(CuBr2) = 11.4 at 25?C. The magnitude in ?log Ks reflected that in the logarithmic solubility product, log {*[M2+](*[X?])2}, for bulk water, where *[M2+] or *[X?] denotes a molar concentration of the bulk solu-tion of M2+ or X? at equilibrium, respectively. Moreover, a mixture of CuSO4 with NaCl at the molar ratio of 1:1 yielded a plot similar to that of CuCl2.
文摘In the present context, the objective of this study was to synthesize and analyze the content of AA of macadamia protein and the impact of hydrogen ion concentration (pH) on AA composition. The determination of AA mainly by cation-exchange chromatography was also investigated. Reproducible and reliable techniques for quantification and identification of AA usually require derivatization. However, techniques such as AA analyzer are composed of cation-exchange chromatography and other components can sideline the derivatization with significant accuracy. The present analysis revealed a higher concentration of essential amino acids especially acidic AA, Glu and Asp and basic AA, Arg than other AA in macadamia protein. The study constitutes first report of use of bubble chart for evaluation of AA and explaination of AAS. The results may elaborate that the degradation of AA of macadamia protein for extraction of pH 11 is caused by the impact of pH. Moreover, the nutritional values of AA present in macadamia protein could change for the better by adjusting pH of extraction.
文摘The diffusion permeability through new hybrid materials based on a Nafion-type membrane (MF- 4SC) and nanotubes of halloysite is investigated using the Nernst-Planck approach. A method of quantitative evaluation of physicochemical parameters (averaged and individual diffusion coefficients and averaged distribution coefficients of ion pairs in the membrane) of system “electrolyte solution—ion-exchange membrane—water”, which was proposed earlier, is further developed. The parameters of hybrid membranes on the base of MF-4SC and nanotubes of halloysite (5% wt and 8% wt) are obtained from experimental data on diffusion permeability of NaCl solutions using theoretical calculations. New model of three-layer membrane system can be used for refining calculated results with taking into account both diffusive layers. It is shown that adding of halloysite nanotubes into the membrane volume noticeably affects exchange capacity as well as structural and transport characteristics of original perfluorinated membranes. Hybrid membranes on the base of MF-4SC and halloysite nanotubes can be used in fuel cells and catalysis.
文摘Poly(vinyl phosphonic acid-co-glycidyl methacrylate-co-divinyl benzene) (PVGD) and PVGD containing an iminodi-acetic acid group (IPVGD), which has indium ion selectivity, were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The synthesized PVGD and IPVGD resins were characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and mercury porosimetry. The cation-exchange capacity, the water uptake and the indium adsorption properties were investigated. The cation-exchange capacities of PVGD and IPVGD were 1.2 - 4.5 meq/g and 2.5 - 6.4 meq/g, respectively. The water uptakes were decreased with increasing contents of divinyl benzene (DVB). The water uptake values were 25% - 40% and 20% - 35%, respectively. The optimum adsorption of indium from a pure indium solution and an artificial indium tin oxide (ITO) solution by the PVGD and IPVGD ion-exchange resins were 2.3 and 3.5 meq/g, respectively. The indium adsorption capacities of IPVGD were higher than those of PVGD. The indium ion adsorption selectivity in the artificial ITO solution by PVGD and IPVGD was excellent, and other ions were adsorbed only slightly.
基金supported by National Natural Science Foundation of China(52103260,52373211,52161135302)Natural Science Foundation of Jiangsu Province(BK20210482,BK20221099)China Postdoctoral Science Foundation(2023T160274,2021M690067)。
文摘Designing cost-effective and high-performing metal catalysts is significant for many renewable energy conversion technologies.Lowering metal loading without sacrificing activity and durability is highly desired for the catalyst design,especially for those reactions where the noble metals deliver the best catalyzing performance.Single-atom catalysts(SACs)with maximal metalatom utilization,homogeneous and tailorable active sites have emerged as promising catalyst candidates,where the local coordination structures of the metal atoms in SACs largely determine the reaction kinetics.Previous design strategies of constructing strong metal-support interactions can stabilize the individual metal atoms in SACs,but present obstacles to provide a flexible manipulation platform for elaborately tailoring the coordination structures to achieve performance optimization towards a specifically targeted reaction.Here,for the proof-of-concept study,we report a novel design of SAC with iridium(Ir)single atoms supported on conjugated polymer,in which the adsorption energies of reaction intermediates on Ir atoms and the reaction kinetics towards acidic water oxidation can be readily optimized through modulating the formed cation-πinteractions that can be tailored by adjusting the molecular structures of conjugated polymers.This strategy establishes a general route to develop targeted SACs for various catalytic reactions.
基金Supported by the National Natural Science Foundation of China (Grant No. 20572117)the Shanghai Postdoctoral Scientific Program (Grant No. Y200-2-08)
文摘Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.
基金Supported by the National Natural Science Foundation of China (Grant No. 20572117)the Shanghai Postdoctoral Scientific Program (Grant No. Y200-2-08)
文摘The M2 protein from influenza A virus is a tetrameric ion channel. It was reported that the permeation of the ion channel is correlated with the hydrogen bond network among His37 residues and the cation-π interactions between His37 and Trp41. In the present study,the hydrogen bonding network of 4-methyl-imidazoles was built to mimic the hydrogen bonds between His37 residues,and the cation-π interactions between 4-methyl-imidazolium and indole systems were selected to represent the interac-tions between His37 and Trp41. Then,quantum chemistry calculations at the MP2/6-311G level were carried out to explore the properties of the hydrogen bonds and the cation-π interactions. The calcula-tion results indicate that the binding strength of the N-H···N hydrogen bond between imidazole rings is up to -6.22 kcal·mol-1,and the binding strength of the strongest cation-π interaction is up to -18.8 kcal·mol-1(T-shaped interaction) or -12.3 kcal·mol-1(parallel stacking interaction). Thus,the calcu-lated binding energies indicate that it is possible to control the permeation of the M2 ion channel through the hydrogen bond network and the cation-π interactions by altering the pH values.
基金Project supported by the National Natural Science Foundation of China (No. 29736170) and the Natural Science Foundation of Zhejiang Province (No. RC01051).
文摘The cation-p interaction between the aromatic organic counterion potassium hydrogen phthalate (KHP) and DTAB micelle in aqueous mixture of EG was investigated, using the techniques of conductivity measurements, UV absorption spectrum and NMR spectrum. The conductivity and UV spectrum studies were with respect to the effect of KHP on DTAB and that of DTAB micelle on KHP, respectively. According to the chemical shift changes of the aromatic ring and the surfactant methylene protons, it can be assumed that KHP penetrated into DTAB micelle with its carboxylic group protruding out of the micellar surface. And the strength of the interaction became weaker with the content of EG in the mixed solvent increasing.
基金supports of the National Natural Science Foundation of China(no.21876119)Special Engineering Team of Sichuan University(no.2020SCUNG122)+1 种基金and Chengdu Science and Technology Program(no.2019-GH02-00029-HZ)H.Z.acknowledges the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC),Canada Foundation Innovation(CFI),and the Canada Research Chairs Program.
文摘Cation-πinteraction is considered one of the strongest noncovalent interactions in aqueous solutions,which endows natural biomolecules(e.g.,proteins)with robust wet adhesion and cohesion in humid/underwater environments.However,it remains a challenge to construct synthetic functional materials(e.g.,self-healing hydrogels)by adopting the cation-πinteractions rationally.Herein,we present a facile and novel strategy to fabricate injectable self-healing synthetic hydrogel from self-assembly of a thermoresponsive ABA triblock copolymer via cation-πinteractions.
基金Supported by the National Natural Science Foundation of China(No.21306133) and the Tianjin Research Program of Appli- cation Foundation and Advanced Technology, China(No. 14JCYBJC22600).
文摘Two sulphur-containing 4-aminonaphthalimide derivatives were investigated as Hg2+ fluorescent chemosensors. In CH3CN, both sensors present a remarkable fluorescence enhancement to Cu2+ and Fe3+, but a selective fluorescence quenching to Hg2+ among the other metal ions. A cation-π interaction between Hg〉 and the naphthalimide moiety was proposed and confirmed By the density tunetional theory(DFT).
基金financially supported by the National Natural Science Foundation of China(No.52173264)the Natural Scienceof Chongqing(No.cstc2020jcyjmsxmX0401)。
文摘Herein, a low-cost, biodegradable, and high-performance microwave shielding graphite/starch material was fabricated via constructing a cation-π interaction between ammonium ions and graphite. The graphite flakes and starch were firstly mixed with distilled water containing ammonium hydroxide to form graphite/starch slurry under an ultrasonic assistant. The cation-π interaction could improve delamination degree and dispersion of graphite in starch matrix. The slurry was first used as a coating material on the surface of wood and paper to develop shielding packages. The effect of coating thickness and coating layers on EM shielding property of the materials was investigated. Second, the composites with a high orientation of graphite were fabricated by compression at high pressures. The electrical conductivity and EM shielding effectiveness(SET) of the materials were greatly enhanced by construction of cation-πinteraction and orientation of graphite. Specifically, the EM SETvalues increased from 56.9 to 66.8 d B for the composites with 50 wt.% graphite and 2.0 mm in thickness by constructing cation-π interaction. The EM SETvalues raised from 17.4 to 66.8 d B via the graphite orientation in the materials with the same components and thickness. The shielding mechanism of the compressed composites with orientation dispersion of graphite was also discussed in comparison to the coating layer with random dispersion of graphite.