Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between ...Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between female goats and dairy cows, this study was conducted to evaluate the effects of varying DCAD on fluid acid-base status, plasma minerals concentration and anti-oxidative stress capacity of female goats. Urinary pH, plasma Ca, P and Mg; and anti-oxidative stress indices of total superoxide dismutase (T-SOD), hydrogen peroxide (HzO2), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were determined to evaluate the effect. Forty-eight Guizhou black female goats ((15±1.9) mon of old, (22.3±3.75) kg of BW) were randomly allocated to 4 blocks of 12 goats each and were fed 1 of 4 diets differed in DCAD level (calculated as Na+K-C1-S, mEq kg-1 DM). Levels of DCAD were preliminarily designed to be control (+ 150 mEq kg^-1 DM, CON), high DCAD (+300 mEq kg^-1 DM, HD), low DCAD (0 mEq kg^-1 DM, LD) and negative DCAD (-150 mEq kg^-1 DM, ND), respectively. A commercial anionic salts (Animate) and sodium bicarbonate (NaHCO3) were supplemented to reduce and increase DCAD level, respectively. There was no difference in dry matter intake for 4 groups of goats. Urine pH was aggressively decreased (P〈0.0001) with reduced DCAD and there was a strong association between DCAD and urine pH (R2=0.793, P〈0.0001). Compared with CON and HD feeding of LD and ND resulted in greater (P〈0.05) plasma Ca concentration. Plasma P level was increased (P〈0.05) when anionic salts were supplemented. The DCAD alteration did not affected (P〉0.05) plasma Mg level. There was no significant (P〉0.05) difference in plasma GSH-Px activity and H202, but anionic salts supplementation in LD and ND significantly increased (P〈0.05) plasma T-SOD activity and tended to reduce MDA (P〈0.1) over HD and CON. Results from this study indicated that reducing DCAD could decrease urine pH and increase plasma Ca concentration of female goats. Additionally, reducing DCAD was helpful to enhance anti-oxidative stress capability of female goats.展开更多
Finding suitable strategies to effectively enhance the optical properties of materials are the goal being pursued by researchers.Herein,cation-anion synergetic interactions strategy was proposed to develop two novel o...Finding suitable strategies to effectively enhance the optical properties of materials are the goal being pursued by researchers.Herein,cation-anion synergetic interactions strategy was proposed to develop two novel organic-inorganic hybrid antimony-based optical materials,(C_(3)H_(5)N_(2))Sb F_(2)SO_(4)(I)and(C_(5)H_(6)N)Sb F_(2)SO_(4)(Ⅱ),which were obtained by introducing Sb^(3+)cation containing stereochemically active lone-pair(SCALP)and organicπ-conjugated cations into sulphate system.The synergistic interactions of the organicπ-conjugated cations,the inorganic[SbO_(2)F_(2)]^(3-)seesaw anions and the[SO_(4)]^(2-)distorted tetrahedra anions make their ultraviolet(UV)absorption edges approach 297 and 283 nm,respectively,and raise their birefringence up to 0.193@546 nm and 0.179@546 nm,respectively.Interestingly,although the two compounds have the same stoichiometric ratio and similar one-dimensional(1D)chain structure,they show opposite macroscopic symmetry,where the NCS compound(Ⅱ)exhibits a large secondharmonic generation(SHG)response(1.6 times that of KH_(2)PO_(4)).The two reported compounds are found to be promising UV optical materials in the experimental tests.展开更多
Rivers are progressively being exposed to increased anthropogenic pollution stresses that are undermining their designated uses and affecting sensitive coastal areas. In this study, three adjacent eastern Mediterranea...Rivers are progressively being exposed to increased anthropogenic pollution stresses that are undermining their designated uses and affecting sensitive coastal areas. In this study, three adjacent eastern Mediterranean coastal rivers, Ibrahim, Kaleb and Beirut, were evaluated. Water quality samples were collected in dry and wet seasons from different sampling sites along the river from the source to the outlet which represent a gradient of increased urbanization. The spatiotemporal variability of the physio-chemical properties, heavy metals (Zn, Pb, Cu, Cr, and Cd) and organic matter (DOC) were statistically analyzed to better understand the contribution of point and nonpoint pollution sources. The three rivers (Beirut, Kaleb and Ibrahim) show a similar behavior in calcium and carbonate alkalinity due to the carbonate mineral weathering effect, so they are of calcium bicarbonate type due to their calcareous geological nature. The speciation of anions was affected by temporal variation. Moreover, it is obvious that the Beirut River has a different behavioral characteristic where the water is a sulfate type water with a preferable metal-OM complexation mainly with lead, zinc and copper, whereas Kaleb and Ibrahim are considered to be of a nitrate phosphate type with a preferable metal inorganic complexation, especially copper, that has a consistent behavior in both types of waters. This difference is attributed to the urbanization effect highly impacting the Beirut River.展开更多
The high-nickel layered cathodes Li[Ni_(x)Co_(y)Mn_(1-x-y)]O_(2)(x≥0.8)with high specific capacity and long cycle life are considered as prospective cathodes for lithium-ion batteries.However,the microcrack formation...The high-nickel layered cathodes Li[Ni_(x)Co_(y)Mn_(1-x-y)]O_(2)(x≥0.8)with high specific capacity and long cycle life are considered as prospective cathodes for lithium-ion batteries.However,the microcrack formation and poor structural stability give rise to inferior rate performance and undesirable cycling life.Herein,we propose a dual modification strategy combining primary particle structure design and element doping to modify Li[Ni_(0.95)Co_(0.025)Mn_(0.025)]O_(2) cathode by tungsten and fluorine co-doped(W-F-NCM95).The doping of W can convert the microstructure of primary particles to the unique rod-like shape,which is beneficial to enhance the reversibility of phase transition and alleviate the generation of microcracks.F doping is conducive to alleviating the surface side reactions.Thus,due to the synergistic effect of W,F codoping,the obtained W-F-NCM95 cathodes deliver a high initial capacity of 236.1 mA h g^(-1) at 0.1 C and superior capacity retention of 88.7%over 100 cycles at 0.5 C.Moreover,the capacity still maintains73.8%after 500 cycles at 0.5 C and the texture of primary particle is intact.This work provides an available strategy by W and F co-doping to enhance the electrochemistry performance of high-nickel cathodes for practical application.展开更多
基金funded by the National Natural Science Foundation of China (30901038, 31160468)the State Key Laboratory of Animal Nutrition, Ministry of Science and Technology, China (2004DA125184F1115)the Key Technology Research and Development Program of Guizhou Province, China ([2009]3085)
文摘Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between female goats and dairy cows, this study was conducted to evaluate the effects of varying DCAD on fluid acid-base status, plasma minerals concentration and anti-oxidative stress capacity of female goats. Urinary pH, plasma Ca, P and Mg; and anti-oxidative stress indices of total superoxide dismutase (T-SOD), hydrogen peroxide (HzO2), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were determined to evaluate the effect. Forty-eight Guizhou black female goats ((15±1.9) mon of old, (22.3±3.75) kg of BW) were randomly allocated to 4 blocks of 12 goats each and were fed 1 of 4 diets differed in DCAD level (calculated as Na+K-C1-S, mEq kg-1 DM). Levels of DCAD were preliminarily designed to be control (+ 150 mEq kg^-1 DM, CON), high DCAD (+300 mEq kg^-1 DM, HD), low DCAD (0 mEq kg^-1 DM, LD) and negative DCAD (-150 mEq kg^-1 DM, ND), respectively. A commercial anionic salts (Animate) and sodium bicarbonate (NaHCO3) were supplemented to reduce and increase DCAD level, respectively. There was no difference in dry matter intake for 4 groups of goats. Urine pH was aggressively decreased (P〈0.0001) with reduced DCAD and there was a strong association between DCAD and urine pH (R2=0.793, P〈0.0001). Compared with CON and HD feeding of LD and ND resulted in greater (P〈0.05) plasma Ca concentration. Plasma P level was increased (P〈0.05) when anionic salts were supplemented. The DCAD alteration did not affected (P〉0.05) plasma Mg level. There was no significant (P〉0.05) difference in plasma GSH-Px activity and H202, but anionic salts supplementation in LD and ND significantly increased (P〈0.05) plasma T-SOD activity and tended to reduce MDA (P〈0.1) over HD and CON. Results from this study indicated that reducing DCAD could decrease urine pH and increase plasma Ca concentration of female goats. Additionally, reducing DCAD was helpful to enhance anti-oxidative stress capability of female goats.
基金supported by the National Natural Science Foundation of China(Nos.22122106,22071158,21971171,22305166)the Fundamental Research Funds from Sichuan University(No.2021SCUNL101)the Natural Science Foundation of Sichuan Province(No.2023NSFC1066)。
文摘Finding suitable strategies to effectively enhance the optical properties of materials are the goal being pursued by researchers.Herein,cation-anion synergetic interactions strategy was proposed to develop two novel organic-inorganic hybrid antimony-based optical materials,(C_(3)H_(5)N_(2))Sb F_(2)SO_(4)(I)and(C_(5)H_(6)N)Sb F_(2)SO_(4)(Ⅱ),which were obtained by introducing Sb^(3+)cation containing stereochemically active lone-pair(SCALP)and organicπ-conjugated cations into sulphate system.The synergistic interactions of the organicπ-conjugated cations,the inorganic[SbO_(2)F_(2)]^(3-)seesaw anions and the[SO_(4)]^(2-)distorted tetrahedra anions make their ultraviolet(UV)absorption edges approach 297 and 283 nm,respectively,and raise their birefringence up to 0.193@546 nm and 0.179@546 nm,respectively.Interestingly,although the two compounds have the same stoichiometric ratio and similar one-dimensional(1D)chain structure,they show opposite macroscopic symmetry,where the NCS compound(Ⅱ)exhibits a large secondharmonic generation(SHG)response(1.6 times that of KH_(2)PO_(4)).The two reported compounds are found to be promising UV optical materials in the experimental tests.
文摘Rivers are progressively being exposed to increased anthropogenic pollution stresses that are undermining their designated uses and affecting sensitive coastal areas. In this study, three adjacent eastern Mediterranean coastal rivers, Ibrahim, Kaleb and Beirut, were evaluated. Water quality samples were collected in dry and wet seasons from different sampling sites along the river from the source to the outlet which represent a gradient of increased urbanization. The spatiotemporal variability of the physio-chemical properties, heavy metals (Zn, Pb, Cu, Cr, and Cd) and organic matter (DOC) were statistically analyzed to better understand the contribution of point and nonpoint pollution sources. The three rivers (Beirut, Kaleb and Ibrahim) show a similar behavior in calcium and carbonate alkalinity due to the carbonate mineral weathering effect, so they are of calcium bicarbonate type due to their calcareous geological nature. The speciation of anions was affected by temporal variation. Moreover, it is obvious that the Beirut River has a different behavioral characteristic where the water is a sulfate type water with a preferable metal-OM complexation mainly with lead, zinc and copper, whereas Kaleb and Ibrahim are considered to be of a nitrate phosphate type with a preferable metal inorganic complexation, especially copper, that has a consistent behavior in both types of waters. This difference is attributed to the urbanization effect highly impacting the Beirut River.
基金supported by the National Key R&D Program of China(2018YFB0905600)。
文摘The high-nickel layered cathodes Li[Ni_(x)Co_(y)Mn_(1-x-y)]O_(2)(x≥0.8)with high specific capacity and long cycle life are considered as prospective cathodes for lithium-ion batteries.However,the microcrack formation and poor structural stability give rise to inferior rate performance and undesirable cycling life.Herein,we propose a dual modification strategy combining primary particle structure design and element doping to modify Li[Ni_(0.95)Co_(0.025)Mn_(0.025)]O_(2) cathode by tungsten and fluorine co-doped(W-F-NCM95).The doping of W can convert the microstructure of primary particles to the unique rod-like shape,which is beneficial to enhance the reversibility of phase transition and alleviate the generation of microcracks.F doping is conducive to alleviating the surface side reactions.Thus,due to the synergistic effect of W,F codoping,the obtained W-F-NCM95 cathodes deliver a high initial capacity of 236.1 mA h g^(-1) at 0.1 C and superior capacity retention of 88.7%over 100 cycles at 0.5 C.Moreover,the capacity still maintains73.8%after 500 cycles at 0.5 C and the texture of primary particle is intact.This work provides an available strategy by W and F co-doping to enhance the electrochemistry performance of high-nickel cathodes for practical application.