The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with t...The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with the molar ratio of reactants from 0.8 to 1.4 under certain pressure.The measurement data were regression with the pseudo-homogeneous(P-H),Eley-Rideal(E-R),and Langmuir-Hinshelwood(L-H)heterogeneous kinetic models.Independent adsorption experiments were implemented to gain the adsorption equilibrium constants of four components.Among the above three models,the L-H model exhibited the best fitting results.The stability of NKC-9 was evaluated by long-term running with the yield of methyl methacrylate no decrease during 3000 h operation.The structure and physicochemical properties of the new and used catalyst were performed by several characterizations including thermogravimetric analysis(TG),scanning electron microscope(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)and so on.展开更多
The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic ...The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic process. On the basis of the proposed mechanism, an equation was derived for correlating distribution coefficient, Kd, dissociation constant, Aa, and adsorption equilibrium constant, K, of the analyzed acid. By this approach, retention data for some aliphatic acids under different operating conditions were predicted. Results are reasonably in agreement with experiment.展开更多
MQ silicone resins were prepared through hydrolytic condensation of ethyl polysilicate or tetraethoxysilane and hexamethyl disiloxane. The unit ratio of the MQ resins was determined by Si-29-NMR. The relationship of t...MQ silicone resins were prepared through hydrolytic condensation of ethyl polysilicate or tetraethoxysilane and hexamethyl disiloxane. The unit ratio of the MQ resins was determined by Si-29-NMR. The relationship of the unit ratio of the product resins with that in the feed was studied. When the reaction was catalyzed by aqueous hydrochloric acid, and the unit ratio of M to Q in the feed was more than 1, the unit ratio of the product was usually lower than that of the feed. The MQ silicon with an unit ratio of M/Q > 2 could not be obtained. However, if the reaction was catalyzed by concentrated sulfuric acid and the reverse hydrolysis process was employed, MQ silicone resin with very high M/Q ratio was successfully prepared.展开更多
The hydrogenation of petroleum resin(PR)is an effective process to prepare high value-added hydrogenated PR(HPR).However,the preparation of non-noble metal-based catalysts with high catalytic activity for PR hydrogena...The hydrogenation of petroleum resin(PR)is an effective process to prepare high value-added hydrogenated PR(HPR).However,the preparation of non-noble metal-based catalysts with high catalytic activity for PR hydrogenation still remains a challenge.Herein,a La promoted Ni-based catalyst is reported through the thermal reduction of quaternary Ni La Mg Al-layered double hydroxides(Ni La Mg Al-LDHs).The incorporation of La is beneficial to the reduction and stability of Ni particles with reduced particle size,and the increased alkalinity effectively mitigates the breakage of molecular chains of PR.As a result,the La promoted Ni-based catalyst exhibits high catalytic activity and excellent stability for PR hydrogenation.A hydrogenation degree of 95.4%and 96.1%can be achieved for HC_(5)PR and HC_(9) PR with less reduced softening point,respectively.Notably,the hydrogenation degree still maintains at 92.7%even after 100 hours’reaction,much better than that without La incorporation or prepared using conventional impregnation method.展开更多
In this paper, a low-cost activated carbon(AC) was prepared from deactivated resin catalyst(DRC) for methyl tert-butyl ether(MTBE) synthesis through carbonization and subsequent steam activation treatment. The activat...In this paper, a low-cost activated carbon(AC) was prepared from deactivated resin catalyst(DRC) for methyl tert-butyl ether(MTBE) synthesis through carbonization and subsequent steam activation treatment. The activated carbon was characterized in detail. After loading various transition metals, including Cu^(2+), Ag+, Co^(2+), Ni^(2+), Zn^(2+), and Fe^(3+) via the ultrasonic-assisted impregnation method, a series of metal-loaded adsorbents(xM-AC) were obtained and their dimethyl sulfide(DMS) adsorption performance was investigated in a batch system. Among these adsorbents, 15Cu-AC presented a superior DMS adsorption capacity equating to 58.986 mg/g due to the formation of S-M(σ) bonds between Cu^(2+) and sulfur atoms of DMS as confirmed by the Raman spectra and kinetic study.展开更多
Liquid phase synthesis of one of the important fuel oxygenate, ethyl tert-butyl ether (ETBE), from etha-nol and tert-butyl alcohol (TBA) has been studied in catalytic distillation column (CDC) using ion exchange...Liquid phase synthesis of one of the important fuel oxygenate, ethyl tert-butyl ether (ETBE), from etha-nol and tert-butyl alcohol (TBA) has been studied in catalytic distillation column (CDC) using ion exchange resin catalyst CT-145H. A packed CDC of 1.2 m height and 50 mm diameter with indigenously developed reactive sec-tion packing was used to generate experimental data. Effect of different key variables on product purity in distillate, was investigated to find the optimum operating conditions for ETBE synthesis. The optimum conditions for 0.2 kg·s-1 of ethanol feed were found:reboiler duty of 375 W, molar feed ratio of 1︰1.3 of reactants, and reflux ratio of 7. Concentration profiles for each component along each column section at optimum conditions were also drawn. Neither output nor input multiplicity was observed at experimental conditions.展开更多
The thermal stability of five commercial ion-exchange resin catalysts was studied by means of thermal gravimetric analysis (TGA) at elevated temperatures of up to 600℃ and isothermal temperatures in the range of 15...The thermal stability of five commercial ion-exchange resin catalysts was studied by means of thermal gravimetric analysis (TGA) at elevated temperatures of up to 600℃ and isothermal temperatures in the range of 150℃ and 200 ℃. Resin samples with different initial water contents were also investigated. The study indicated that TGA, as a complementary evaluating method for the plug flow reactor system approach, could be used as a fast analyzing means for study on the thermal stability of ion-exchange resin catalysts. The stoichiometric calculation of the isothermally treated resin catalysts based on the FTIR analysis and acid capacity confirmed that the weight loss of the resins at 150℃ and 200℃ was caused by the desulfonation process and that desulfonation occurred mainly at the para-position of the benzene ring in the resins. H+ ions and moisture played an important role in the desulfonation process.展开更多
The performance of ion-exchange resin catalysts during isobutene (IB) dimerization was investigated under different IB contents,temperatures and liquid-volume hourly space velocity (LHSV) using a plug flow reactor in ...The performance of ion-exchange resin catalysts during isobutene (IB) dimerization was investigated under different IB contents,temperatures and liquid-volume hourly space velocity (LHSV) using a plug flow reactor in the absence of any selectivity enhancing component.High IB content and temperature resulted in a high conversion and C12 selectivity bu low C8 selectivity.The influence of LHSV was related with the IB content:LHSV had great effect at high IB content,while the performance of ion-exchange resin changed little with LHSV if IB content was low.The effect of water on the stability of resins was also studied.Desulfonation was observed during the C4 dimerization reaction when water was added to the feed.Chlorinated resin was more stable than conventional polystyrene-based resins during the test.展开更多
The Solvated Metal Atom Impregnation (SMAI) technique was employed to prepare macroporous resin immobilized Pd--Cu bimetallic cluster catalysts. The X--ray diffraction (XRD) and transmission electron micrograph (TEM) ...The Solvated Metal Atom Impregnation (SMAI) technique was employed to prepare macroporous resin immobilized Pd--Cu bimetallic cluster catalysts. The X--ray diffraction (XRD) and transmission electron micrograph (TEM) showed that Pd--Cu alloy was formed and the particle sizes of Pd--Cu clusters were very small, with average diameters <3nm. X--ray photoelectron spectroscopy indicated that both Pd and Cu were in zero--valent state. The catalytic activities of the macroporous resin immobilized Pd--Cu catalysts in hydrogenation of 4--methyl--3--penten--2--one were much greater than that of the carbon supported Pd--Cu catalysts.展开更多
Significant scientific and economic benefits may be derived from investigating the best choice of catalyst in the alkyd resin synthesis. The effect of catalyst type and concentration on the production of alkyd resin u...Significant scientific and economic benefits may be derived from investigating the best choice of catalyst in the alkyd resin synthesis. The effect of catalyst type and concentration on the production of alkyd resin using castor seed oil (CSO) was evaluated. Lithium hydroxide, lead (II) oxide, calcium carbonate, sodium hydroxide and calcium oxide were investigated. The fatty acid profile of the raw CSO was determined using GC-MS while structural elucidation of the CSO based alkyd resins was determined using FTIR spectrometry. The CSO modified alkyd resin produced has acid values of 5.0, 5.61, 7.0 8.24 and 11 for lithium hydroxide, lead (II) oxide, calcium carbonate, sodium hydroxide and calcium oxide respectively. The extent of reaction was 95%, 95%, 91%, 89% and 88% for lithium hydroxide, lead (II) oxide, calcium carbonate, sodium hydroxide and calcium oxide respectively at the reaction time of 150 minutes. The alcoholysis reaction completion time was fastest in LiOH followed by PbO, CaCO<sub>3</sub>, NaOH and CaO catalyst. Physico-chemical parameters of the oil and performance evaluation of the alkyd films suggest that they are sustainable materials for surface coating. LiOH shows excellent robustness to expanded process parameters.展开更多
In this study the third amine and phosphine were selected as the catalysts of epoxy resin, the influence of these catalysts on curing reaction was observed in comparison with the former selected quadrupole onium salt ...In this study the third amine and phosphine were selected as the catalysts of epoxy resin, the influence of these catalysts on curing reaction was observed in comparison with the former selected quadrupole onium salt and the influence of them on physical properties of solidified matter was also studied. (Author abstract) 10 Refs.展开更多
A series of Pd catalysts were prepared on different supports(Fe2O3,SiO2,ZnO,MgO,Al2O3,carbon,and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water.The Amberlyst-45 supported P...A series of Pd catalysts were prepared on different supports(Fe2O3,SiO2,ZnO,MgO,Al2O3,carbon,and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water.The Amberlyst-45 supported Pd catalyst(Pd/A-45) was highly active and selective under mild conditions(40-100 ℃,0.2-1 MPa),giving a selectivity of cyclohexanone higher than 89%even at complete conversion of phenol.Experiments with different Pd loadings(or different particle sizes) confirmed that the formation of cyclohexanone was a structure sensitive reaction,and Pd particles of12-14 nm on Amberlyst-45 gave better selectivity and stability.展开更多
Resin and asphaltene were separated from Liaohe heavy oil. Catalytic aquathermolysis of asphaltene and resin was investigated by using water soluble catalysts (NiSO4 and FeSO4) and oil soluble catalysts (nickel nap...Resin and asphaltene were separated from Liaohe heavy oil. Catalytic aquathermolysis of asphaltene and resin was investigated by using water soluble catalysts (NiSO4 and FeSO4) and oil soluble catalysts (nickel naphthenate and iron naphthenate). Before and after aquathermolysis, the properties of the resin and asphaltene was compared by means of ultimate analysis, vapor pressure osmometer (VPO) average molecular weight, X-ray diffraction (XRD),^13C and ^1H nuclear magnetic resonance (NMR). The conversion sequence was as follows: No-catalyst〈NiSO4〈FeSO4〈nickel naphthenate〈iron naphthenate. In the presence of catalysts, the amount of H2 and CO increased significantly, while H2S in the gas product decreased. The molecular weight of asphaltene and resin increased after reaction without catalyst. But the catalysts restrained this trend. The H/C ratio of asphaltene and resin decreased after reaction. From the results of average structural parameters and molecular weight, it was found that asphaltene and resin were partly aggregated after aquathermolysis.展开更多
基金the National Natural Science Fund for Distinguished Young Scholars(22025803)supported by the National Natural Science Foundation of China(22178338)+1 种基金the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021018)the financial support of project“Research and development and industrial application of new catalytic materials for green synthesis of MMA to replace highly toxic HCN”(Hebei,20374002D)。
文摘The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with the molar ratio of reactants from 0.8 to 1.4 under certain pressure.The measurement data were regression with the pseudo-homogeneous(P-H),Eley-Rideal(E-R),and Langmuir-Hinshelwood(L-H)heterogeneous kinetic models.Independent adsorption experiments were implemented to gain the adsorption equilibrium constants of four components.Among the above three models,the L-H model exhibited the best fitting results.The stability of NKC-9 was evaluated by long-term running with the yield of methyl methacrylate no decrease during 3000 h operation.The structure and physicochemical properties of the new and used catalyst were performed by several characterizations including thermogravimetric analysis(TG),scanning electron microscope(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)and so on.
文摘The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic process. On the basis of the proposed mechanism, an equation was derived for correlating distribution coefficient, Kd, dissociation constant, Aa, and adsorption equilibrium constant, K, of the analyzed acid. By this approach, retention data for some aliphatic acids under different operating conditions were predicted. Results are reasonably in agreement with experiment.
文摘MQ silicone resins were prepared through hydrolytic condensation of ethyl polysilicate or tetraethoxysilane and hexamethyl disiloxane. The unit ratio of the MQ resins was determined by Si-29-NMR. The relationship of the unit ratio of the product resins with that in the feed was studied. When the reaction was catalyzed by aqueous hydrochloric acid, and the unit ratio of M to Q in the feed was more than 1, the unit ratio of the product was usually lower than that of the feed. The MQ silicon with an unit ratio of M/Q > 2 could not be obtained. However, if the reaction was catalyzed by concentrated sulfuric acid and the reverse hydrolysis process was employed, MQ silicone resin with very high M/Q ratio was successfully prepared.
基金financially supported by the National Natural Science Foundation of China(22078064)Natural Science Foundation of Fujian Province for Distinguished Young Scholar(2018J06002)。
文摘The hydrogenation of petroleum resin(PR)is an effective process to prepare high value-added hydrogenated PR(HPR).However,the preparation of non-noble metal-based catalysts with high catalytic activity for PR hydrogenation still remains a challenge.Herein,a La promoted Ni-based catalyst is reported through the thermal reduction of quaternary Ni La Mg Al-layered double hydroxides(Ni La Mg Al-LDHs).The incorporation of La is beneficial to the reduction and stability of Ni particles with reduced particle size,and the increased alkalinity effectively mitigates the breakage of molecular chains of PR.As a result,the La promoted Ni-based catalyst exhibits high catalytic activity and excellent stability for PR hydrogenation.A hydrogenation degree of 95.4%and 96.1%can be achieved for HC_(5)PR and HC_(9) PR with less reduced softening point,respectively.Notably,the hydrogenation degree still maintains at 92.7%even after 100 hours’reaction,much better than that without La incorporation or prepared using conventional impregnation method.
基金financially supported by the National Natural Science Foundation of China (No. 21276086)
文摘In this paper, a low-cost activated carbon(AC) was prepared from deactivated resin catalyst(DRC) for methyl tert-butyl ether(MTBE) synthesis through carbonization and subsequent steam activation treatment. The activated carbon was characterized in detail. After loading various transition metals, including Cu^(2+), Ag+, Co^(2+), Ni^(2+), Zn^(2+), and Fe^(3+) via the ultrasonic-assisted impregnation method, a series of metal-loaded adsorbents(xM-AC) were obtained and their dimethyl sulfide(DMS) adsorption performance was investigated in a batch system. Among these adsorbents, 15Cu-AC presented a superior DMS adsorption capacity equating to 58.986 mg/g due to the formation of S-M(σ) bonds between Cu^(2+) and sulfur atoms of DMS as confirmed by the Raman spectra and kinetic study.
基金Part of this paper was included in the proceedings of World Congress on Engineering and Computer Science,San Francisco,USA,22-24 October,2008,pp.79-84(ISBN 978-988-98671-0-2)The first author is grateful to Higher Education Commission of Pakistan for funding this research under indigenous scheme
文摘Liquid phase synthesis of one of the important fuel oxygenate, ethyl tert-butyl ether (ETBE), from etha-nol and tert-butyl alcohol (TBA) has been studied in catalytic distillation column (CDC) using ion exchange resin catalyst CT-145H. A packed CDC of 1.2 m height and 50 mm diameter with indigenously developed reactive sec-tion packing was used to generate experimental data. Effect of different key variables on product purity in distillate, was investigated to find the optimum operating conditions for ETBE synthesis. The optimum conditions for 0.2 kg·s-1 of ethanol feed were found:reboiler duty of 375 W, molar feed ratio of 1︰1.3 of reactants, and reflux ratio of 7. Concentration profiles for each component along each column section at optimum conditions were also drawn. Neither output nor input multiplicity was observed at experimental conditions.
基金supported financially by the Purolite Company and Chinese National Natural Science Foundation(20674069)
文摘The thermal stability of five commercial ion-exchange resin catalysts was studied by means of thermal gravimetric analysis (TGA) at elevated temperatures of up to 600℃ and isothermal temperatures in the range of 150℃ and 200 ℃. Resin samples with different initial water contents were also investigated. The study indicated that TGA, as a complementary evaluating method for the plug flow reactor system approach, could be used as a fast analyzing means for study on the thermal stability of ion-exchange resin catalysts. The stoichiometric calculation of the isothermally treated resin catalysts based on the FTIR analysis and acid capacity confirmed that the weight loss of the resins at 150℃ and 200℃ was caused by the desulfonation process and that desulfonation occurred mainly at the para-position of the benzene ring in the resins. H+ ions and moisture played an important role in the desulfonation process.
基金supported financially by the Purolite Company and the Chinese National Natural Science Foundation (20674069)
文摘The performance of ion-exchange resin catalysts during isobutene (IB) dimerization was investigated under different IB contents,temperatures and liquid-volume hourly space velocity (LHSV) using a plug flow reactor in the absence of any selectivity enhancing component.High IB content and temperature resulted in a high conversion and C12 selectivity bu low C8 selectivity.The influence of LHSV was related with the IB content:LHSV had great effect at high IB content,while the performance of ion-exchange resin changed little with LHSV if IB content was low.The effect of water on the stability of resins was also studied.Desulfonation was observed during the C4 dimerization reaction when water was added to the feed.Chlorinated resin was more stable than conventional polystyrene-based resins during the test.
文摘The Solvated Metal Atom Impregnation (SMAI) technique was employed to prepare macroporous resin immobilized Pd--Cu bimetallic cluster catalysts. The X--ray diffraction (XRD) and transmission electron micrograph (TEM) showed that Pd--Cu alloy was formed and the particle sizes of Pd--Cu clusters were very small, with average diameters <3nm. X--ray photoelectron spectroscopy indicated that both Pd and Cu were in zero--valent state. The catalytic activities of the macroporous resin immobilized Pd--Cu catalysts in hydrogenation of 4--methyl--3--penten--2--one were much greater than that of the carbon supported Pd--Cu catalysts.
文摘Significant scientific and economic benefits may be derived from investigating the best choice of catalyst in the alkyd resin synthesis. The effect of catalyst type and concentration on the production of alkyd resin using castor seed oil (CSO) was evaluated. Lithium hydroxide, lead (II) oxide, calcium carbonate, sodium hydroxide and calcium oxide were investigated. The fatty acid profile of the raw CSO was determined using GC-MS while structural elucidation of the CSO based alkyd resins was determined using FTIR spectrometry. The CSO modified alkyd resin produced has acid values of 5.0, 5.61, 7.0 8.24 and 11 for lithium hydroxide, lead (II) oxide, calcium carbonate, sodium hydroxide and calcium oxide respectively. The extent of reaction was 95%, 95%, 91%, 89% and 88% for lithium hydroxide, lead (II) oxide, calcium carbonate, sodium hydroxide and calcium oxide respectively at the reaction time of 150 minutes. The alcoholysis reaction completion time was fastest in LiOH followed by PbO, CaCO<sub>3</sub>, NaOH and CaO catalyst. Physico-chemical parameters of the oil and performance evaluation of the alkyd films suggest that they are sustainable materials for surface coating. LiOH shows excellent robustness to expanded process parameters.
文摘In this study the third amine and phosphine were selected as the catalysts of epoxy resin, the influence of these catalysts on curing reaction was observed in comparison with the former selected quadrupole onium salt and the influence of them on physical properties of solidified matter was also studied. (Author abstract) 10 Refs.
基金supported by the National Natural Science Foundation of China(21473155,21273198,21073159)the Natural Science Foundation of Zhejiang Province(LZ12B03001)~~
文摘A series of Pd catalysts were prepared on different supports(Fe2O3,SiO2,ZnO,MgO,Al2O3,carbon,and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water.The Amberlyst-45 supported Pd catalyst(Pd/A-45) was highly active and selective under mild conditions(40-100 ℃,0.2-1 MPa),giving a selectivity of cyclohexanone higher than 89%even at complete conversion of phenol.Experiments with different Pd loadings(or different particle sizes) confirmed that the formation of cyclohexanone was a structure sensitive reaction,and Pd particles of12-14 nm on Amberlyst-45 gave better selectivity and stability.
基金supported by the Chinese Natural Science Foundation (No. 40472061)Funding Project for Academic Human Resources Development in Institutions of Higher Learning of Beijing Municipality (No. PXM2007-014222-044654)Funding Project of Organization Department of Beijing Municipal Party Committee (No. 20071D0500500163)
文摘Resin and asphaltene were separated from Liaohe heavy oil. Catalytic aquathermolysis of asphaltene and resin was investigated by using water soluble catalysts (NiSO4 and FeSO4) and oil soluble catalysts (nickel naphthenate and iron naphthenate). Before and after aquathermolysis, the properties of the resin and asphaltene was compared by means of ultimate analysis, vapor pressure osmometer (VPO) average molecular weight, X-ray diffraction (XRD),^13C and ^1H nuclear magnetic resonance (NMR). The conversion sequence was as follows: No-catalyst〈NiSO4〈FeSO4〈nickel naphthenate〈iron naphthenate. In the presence of catalysts, the amount of H2 and CO increased significantly, while H2S in the gas product decreased. The molecular weight of asphaltene and resin increased after reaction without catalyst. But the catalysts restrained this trend. The H/C ratio of asphaltene and resin decreased after reaction. From the results of average structural parameters and molecular weight, it was found that asphaltene and resin were partly aggregated after aquathermolysis.