The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with t...The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with the molar ratio of reactants from 0.8 to 1.4 under certain pressure.The measurement data were regression with the pseudo-homogeneous(P-H),Eley-Rideal(E-R),and Langmuir-Hinshelwood(L-H)heterogeneous kinetic models.Independent adsorption experiments were implemented to gain the adsorption equilibrium constants of four components.Among the above three models,the L-H model exhibited the best fitting results.The stability of NKC-9 was evaluated by long-term running with the yield of methyl methacrylate no decrease during 3000 h operation.The structure and physicochemical properties of the new and used catalyst were performed by several characterizations including thermogravimetric analysis(TG),scanning electron microscope(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)and so on.展开更多
An effective cation-exchange chromatographic method for lysozyme isolation from chicken egg white is presented, using supermacroporous cryogel grafted with sulfo functional groups. The chromatographic processes were c...An effective cation-exchange chromatographic method for lysozyme isolation from chicken egg white is presented, using supermacroporous cryogel grafted with sulfo functional groups. The chromatographic processes were carried out by one-step and sequential elution, respectively. Sodium phosphate buffer (pH 7.8) containing different concentrations of NaC1 is used as elution agent. The corresponding breakthrough characteristics and elution behaviors in the cryogel bed were investigated and analyzed. Purity of lysozyme in the elution effluent was assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The maximum purity of the obtained lysozyme was about 96%, and the cryogel is demonstrated as a potential separation medium for purification of high-purit lysozyme from chicken egg white.展开更多
The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appear...The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(Δ H 0, Δ S 0) of those proteins were determined by means of Vant Hoff relationship(ln k -1/ T ). According to standard entropy change(Δ S 0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between Δ H 0 and Δ S 0 can be used to evaluate 'compensation temperature'( β ) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.展开更多
The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic ...The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic process. On the basis of the proposed mechanism, an equation was derived for correlating distribution coefficient, Kd, dissociation constant, Aa, and adsorption equilibrium constant, K, of the analyzed acid. By this approach, retention data for some aliphatic acids under different operating conditions were predicted. Results are reasonably in agreement with experiment.展开更多
In the present context, the objective of this study was to synthesize and analyze the content of AA of macadamia protein and the impact of hydrogen ion concentration (pH) on AA composition. The determination of AA mai...In the present context, the objective of this study was to synthesize and analyze the content of AA of macadamia protein and the impact of hydrogen ion concentration (pH) on AA composition. The determination of AA mainly by cation-exchange chromatography was also investigated. Reproducible and reliable techniques for quantification and identification of AA usually require derivatization. However, techniques such as AA analyzer are composed of cation-exchange chromatography and other components can sideline the derivatization with significant accuracy. The present analysis revealed a higher concentration of essential amino acids especially acidic AA, Glu and Asp and basic AA, Arg than other AA in macadamia protein. The study constitutes first report of use of bubble chart for evaluation of AA and explaination of AAS. The results may elaborate that the degradation of AA of macadamia protein for extraction of pH 11 is caused by the impact of pH. Moreover, the nutritional values of AA present in macadamia protein could change for the better by adjusting pH of extraction.展开更多
The diffusion permeability through new hybrid materials based on a Nafion-type membrane (MF- 4SC) and nanotubes of halloysite is investigated using the Nernst-Planck approach. A method of quantitative evaluation of ph...The diffusion permeability through new hybrid materials based on a Nafion-type membrane (MF- 4SC) and nanotubes of halloysite is investigated using the Nernst-Planck approach. A method of quantitative evaluation of physicochemical parameters (averaged and individual diffusion coefficients and averaged distribution coefficients of ion pairs in the membrane) of system “electrolyte solution—ion-exchange membrane—water”, which was proposed earlier, is further developed. The parameters of hybrid membranes on the base of MF-4SC and nanotubes of halloysite (5% wt and 8% wt) are obtained from experimental data on diffusion permeability of NaCl solutions using theoretical calculations. New model of three-layer membrane system can be used for refining calculated results with taking into account both diffusive layers. It is shown that adding of halloysite nanotubes into the membrane volume noticeably affects exchange capacity as well as structural and transport characteristics of original perfluorinated membranes. Hybrid membranes on the base of MF-4SC and halloysite nanotubes can be used in fuel cells and catalysis.展开更多
Ethoxymethxoymethane (EMM) was conveniently prepared by acetalization of aqueous formaldehyde with methanol andethanol in a batch reactive distillation mode using a cation-exchange resin catalyst for the first time....Ethoxymethxoymethane (EMM) was conveniently prepared by acetalization of aqueous formaldehyde with methanol andethanol in a batch reactive distillation mode using a cation-exchange resin catalyst for the first time. EMM was found tO be asignificant cosolvent of methano1/gasoline blends, ? 2009 Ai You Hao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All fights reserved.展开更多
The judicious implantation of active metal cations into the surface of semiconductor nanocrystal(NC)through cation-exchange is one of the facile and viable strategies to enhance the activity of catalysts for photocata...The judicious implantation of active metal cations into the surface of semiconductor nanocrystal(NC)through cation-exchange is one of the facile and viable strategies to enhance the activity of catalysts for photocatalytic CO_(2)reduction,by shortening the transfer pathway of photogenerated carriers and increasing the active sites simultaneously.However,cation-exchange is hard to achieve for halide perovskite NCs owing to the stable octahedron of[PbX6]4−with strong interaction between halogen and lead.Herein,we report a facile method to overcome this obstacle by replacing partial Br−with acetate(Ac−)to generate CsPbBr_(3) NC(coded as CsPbBr_(3−x)Ac_(x)).A small amount of Ac−instead of Br−does not change the crystal structure of halide perovskite.Owing to the weaker interaction between acetate and lead in comparison with bromide,the corresponding octahedron structure containing acetate in CsPbBr_(3−x)Ac_(x) can be easily opened to realize efficient cation-exchange with Ni^(2+) ions.The resulting high loading amount of Ni^(2+) as active site endows CsPbBr_(3−x)Ac_(x) with an improved performance for photocatalytic CO_(2)reduction under visible light irradiation,exhibiting a significantly increased CO yield of 44.09μmol·g^(−1)·h^(−1),which is over 8 and 3 times higher than those of traditional pristine CsPbBr_(3) and nickel doped CsPbBr_(3) NC,respectively.This work provides a critical solution for the efficient metal doping of low-cost halide perovskite NCs to enhance their photocatalytic activity,promoting their practical applications in the field of photocatalysis.展开更多
A novel central hole-expansion phenomenon is identified, in which the cation-exchange resin is pyrolyzed in a mixed atmosphere of nitrogen and oxygen at 400–500 ℃. In this reaction, the reaction path is predictable ...A novel central hole-expansion phenomenon is identified, in which the cation-exchange resin is pyrolyzed in a mixed atmosphere of nitrogen and oxygen at 400–500 ℃. In this reaction, the reaction path is predictable and always starts from the center of the resin particle to form a central hole, then continues and expands around the hole, finally forming a uniformly distributed hole group;the particle surface remains intact. Analysis shows that this formation mode is due to the different reaction paths of sulfonic groups between the surface and interior of the particle, caused by the temperature difference. On the surface, transformation reactions happen at high temperatures(410–500 ℃) to form stable organic sulfur structures, while decomposition occurs inside the particle at a relatively low temperature(<410 ℃) and promotes complete pyrolysis of the copolymer matrix to form holes.展开更多
A combination of hydrophilic interaction chromatographic(HILIC) column and a weakly acidic cation-exchange resin(WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography(I...A combination of hydrophilic interaction chromatographic(HILIC) column and a weakly acidic cation-exchange resin(WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography(IC).Firstly,the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions.The columns used were SeQuant ZIC-HILIC(ZIC-HILIC) with a sulfobetaine-zwitterion stationary phase(ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase(HILIC-10).When using tartaric acid as the eluent,the HILIC columns indicated strong retentions for anions,based on ion-pair interaction.Especially,HILIC-10 could strongly retain anions compared with ZIC-HILIC.The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I-> NO-3 > Br-> Cl-> H2PO-4.However,since HILIC-10 could not separate analyte cations,a WCX column(TSKgel Super IC-A/C) was connected after the HILIC column in series.The combination column system of HILIC and WCX columns could successfully separate ten ions(Na+,NH+4,K+,Mg2+,Ca2+,H2PO-4,Cl-,Br-,NO-3 and I-) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6.The relative standard deviations(RSDs) of analyte ions by the system were in the ranges of 0.02%-0.05% in retention times and 0.18%-5.3% in peak areas through three-time successive injections.The limits of detection at signal-to-noise ratio of 3 were 0.24-0.30 μmol/L for the cations and 0.31-1.2 μmol/L for the anions.This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.展开更多
Red phosphor K2LiA1F6:Mn4+ has been synthesized by a cation-exchange method in HF solution. To optimize their optical properties, phosphors were synthesized using different reaction conditions. The K2LiA1F6:0.5%Mn4...Red phosphor K2LiA1F6:Mn4+ has been synthesized by a cation-exchange method in HF solution. To optimize their optical properties, phosphors were synthesized using different reaction conditions. The K2LiA1F6:0.5%Mn4+ synthesized at 20℃ for 4 h shows the highest luminescence intensity. The temperature-dependent emission intensity of the phosphor was investigated, and it was found to exhibit good thermal stability, making it a promising red phosphor candidate for warm WLEDs.展开更多
A laser trapping-microspectroscopy technique combined with excitation energy transfer from a fluorescent cationic dye (Rhodamine B, RB+) to a non-fluorescent cationic dye (Malachite Green, MG+) was employed to study p...A laser trapping-microspectroscopy technique combined with excitation energy transfer from a fluorescent cationic dye (Rhodamine B, RB+) to a non-fluorescent cationic dye (Malachite Green, MG+) was employed to study pH effects on the diffusion coefficients of MG+ (D(MG+)) in single cation-exchange resin microparticles with the diameters of 16 μm. When RB+-pre-adsorbed resin particles were soaked in an aqueous MG+ solution, the RB+ fluorescence was quenched gradually with the soaking time. The time course of the quenching efficiency of RB+ by MG+ was then used to evaluate the D(MG+) value in the particle. The D(MG+) value increased from 1.1 × 10-11 to 4.3 × 10-11 cm2.s–1 on going the solu- tion pH value from 9 to 4. The results were explained reasonably by a Donnan electric potential model.展开更多
This study examines the phenomena of the hormone-active fibers obtaining process, in the form of artificial insulin depot. As a fibrous carrier of insulin cation-exchange polyacrylonitrile (PAN) fibers and biodegradab...This study examines the phenomena of the hormone-active fibers obtaining process, in the form of artificial insulin depot. As a fibrous carrier of insulin cation-exchange polyacrylonitrile (PAN) fibers and biodegradable polysaccharide alginate fibers were used. The process of obtaining fibrous artificial insulin depot was based on the chemisorption of insulin from insulin aqueous solutions by these fibers. The parameters of insulin chemisorption reaction were determined and their influence on quantities of bonded insulin in the artificial depot was studied. The impact of fiber polymer nature on the intensity of insulin chemisorption was studied and determined. Also, the location and deposition of insulin in and onto the fiber, fiber topography were studied. The maximum amounts of bounded insulin for the cation-exchange PAN fibers were 395.0 mg porcine insulin chromatographic / g of fiber, and for the alginate fibers were about 300? mg of porcine insulin chromatographic / g of fiber.展开更多
The analysis of seven aliphatic carboxylic acids(formic,acetic,propionic,iso-butyric,n-butyric,iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion ...The analysis of seven aliphatic carboxylic acids(formic,acetic,propionic,iso-butyric,n-butyric,iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion chromatography with dilute acidic eluents(benzoic acid,perfluorobutyric acid(PFBA) and sulfuric acid) and non-suppressed conductivity/ultraviolet(UV) detection.The columns used were a styrene/divinylbenzene-based strongly acidic cation-exchange resin column(TSKgel SCX) and a polymethacrylate-based weakly acidic cation-exchange resin column(TSKgel Super IC-A/C).Good separation was performed on the TSKgel SCX in shorter retention times.For the TSKgel Super IC-A/C,peak shape of the acids was sharp and symmetrical in spite of longer retention times.In addition,the mutual separation of the acids was good except for iso-and n-butyric acids.The better separation and good detection was achieved by using the two columns(TSKgel SCX and TSKgel Super IC-A/C connected in series),lower concentrations of PFBA and sulfuric acid as eluents,non-suppressed conductivity detection and UV detection at 210 nm.This analysis was applied to anaerobic digestion process waters.The chromatograms with conductivity detection were relatively simpler compared with those of UV detection.The use of two columns with different selectivities for the aliphatic carboxylic acids and the two detection modes was effective for the determination and identification of the analytes in anaerobic digestion process waters containing complex matrices.展开更多
基金the National Natural Science Fund for Distinguished Young Scholars(22025803)supported by the National Natural Science Foundation of China(22178338)+1 种基金the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021018)the financial support of project“Research and development and industrial application of new catalytic materials for green synthesis of MMA to replace highly toxic HCN”(Hebei,20374002D)。
文摘The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with the molar ratio of reactants from 0.8 to 1.4 under certain pressure.The measurement data were regression with the pseudo-homogeneous(P-H),Eley-Rideal(E-R),and Langmuir-Hinshelwood(L-H)heterogeneous kinetic models.Independent adsorption experiments were implemented to gain the adsorption equilibrium constants of four components.Among the above three models,the L-H model exhibited the best fitting results.The stability of NKC-9 was evaluated by long-term running with the yield of methyl methacrylate no decrease during 3000 h operation.The structure and physicochemical properties of the new and used catalyst were performed by several characterizations including thermogravimetric analysis(TG),scanning electron microscope(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)and so on.
基金Supported by the National lqatural Science Foundation of China (21036005, 20876145), the Science and Technology Cooperation Project between China-Europe Country's Governments from the Ministry of Science and Technology of China (1017) and the Natural Science Foundation of Zhejiang Provincial (Y4080326).
文摘An effective cation-exchange chromatographic method for lysozyme isolation from chicken egg white is presented, using supermacroporous cryogel grafted with sulfo functional groups. The chromatographic processes were carried out by one-step and sequential elution, respectively. Sodium phosphate buffer (pH 7.8) containing different concentrations of NaC1 is used as elution agent. The corresponding breakthrough characteristics and elution behaviors in the cryogel bed were investigated and analyzed. Purity of lysozyme in the elution effluent was assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The maximum purity of the obtained lysozyme was about 96%, and the cryogel is demonstrated as a potential separation medium for purification of high-purit lysozyme from chicken egg white.
基金Supported by Shaan xi Provincial Scientific- Comm ittee( 96 H0 9)
文摘The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(Δ H 0, Δ S 0) of those proteins were determined by means of Vant Hoff relationship(ln k -1/ T ). According to standard entropy change(Δ S 0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between Δ H 0 and Δ S 0 can be used to evaluate 'compensation temperature'( β ) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.
文摘The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic process. On the basis of the proposed mechanism, an equation was derived for correlating distribution coefficient, Kd, dissociation constant, Aa, and adsorption equilibrium constant, K, of the analyzed acid. By this approach, retention data for some aliphatic acids under different operating conditions were predicted. Results are reasonably in agreement with experiment.
文摘In the present context, the objective of this study was to synthesize and analyze the content of AA of macadamia protein and the impact of hydrogen ion concentration (pH) on AA composition. The determination of AA mainly by cation-exchange chromatography was also investigated. Reproducible and reliable techniques for quantification and identification of AA usually require derivatization. However, techniques such as AA analyzer are composed of cation-exchange chromatography and other components can sideline the derivatization with significant accuracy. The present analysis revealed a higher concentration of essential amino acids especially acidic AA, Glu and Asp and basic AA, Arg than other AA in macadamia protein. The study constitutes first report of use of bubble chart for evaluation of AA and explaination of AAS. The results may elaborate that the degradation of AA of macadamia protein for extraction of pH 11 is caused by the impact of pH. Moreover, the nutritional values of AA present in macadamia protein could change for the better by adjusting pH of extraction.
文摘The diffusion permeability through new hybrid materials based on a Nafion-type membrane (MF- 4SC) and nanotubes of halloysite is investigated using the Nernst-Planck approach. A method of quantitative evaluation of physicochemical parameters (averaged and individual diffusion coefficients and averaged distribution coefficients of ion pairs in the membrane) of system “electrolyte solution—ion-exchange membrane—water”, which was proposed earlier, is further developed. The parameters of hybrid membranes on the base of MF-4SC and nanotubes of halloysite (5% wt and 8% wt) are obtained from experimental data on diffusion permeability of NaCl solutions using theoretical calculations. New model of three-layer membrane system can be used for refining calculated results with taking into account both diffusive layers. It is shown that adding of halloysite nanotubes into the membrane volume noticeably affects exchange capacity as well as structural and transport characteristics of original perfluorinated membranes. Hybrid membranes on the base of MF-4SC and halloysite nanotubes can be used in fuel cells and catalysis.
文摘Ethoxymethxoymethane (EMM) was conveniently prepared by acetalization of aqueous formaldehyde with methanol andethanol in a batch reactive distillation mode using a cation-exchange resin catalyst for the first time. EMM was found tO be asignificant cosolvent of methano1/gasoline blends, ? 2009 Ai You Hao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All fights reserved.
基金Natural Science Foundation of Tianjin City(No.17JCJQJC43800)the National Key R&D Program of China(No.2017YFA0700104)+1 种基金the National Natural Science Foundation of China(No.21931007)the 111 Project(No.D17003).
文摘The judicious implantation of active metal cations into the surface of semiconductor nanocrystal(NC)through cation-exchange is one of the facile and viable strategies to enhance the activity of catalysts for photocatalytic CO_(2)reduction,by shortening the transfer pathway of photogenerated carriers and increasing the active sites simultaneously.However,cation-exchange is hard to achieve for halide perovskite NCs owing to the stable octahedron of[PbX6]4−with strong interaction between halogen and lead.Herein,we report a facile method to overcome this obstacle by replacing partial Br−with acetate(Ac−)to generate CsPbBr_(3) NC(coded as CsPbBr_(3−x)Ac_(x)).A small amount of Ac−instead of Br−does not change the crystal structure of halide perovskite.Owing to the weaker interaction between acetate and lead in comparison with bromide,the corresponding octahedron structure containing acetate in CsPbBr_(3−x)Ac_(x) can be easily opened to realize efficient cation-exchange with Ni^(2+) ions.The resulting high loading amount of Ni^(2+) as active site endows CsPbBr_(3−x)Ac_(x) with an improved performance for photocatalytic CO_(2)reduction under visible light irradiation,exhibiting a significantly increased CO yield of 44.09μmol·g^(−1)·h^(−1),which is over 8 and 3 times higher than those of traditional pristine CsPbBr_(3) and nickel doped CsPbBr_(3) NC,respectively.This work provides a critical solution for the efficient metal doping of low-cost halide perovskite NCs to enhance their photocatalytic activity,promoting their practical applications in the field of photocatalysis.
基金supported by the Joint Funds of the National Natural Science Foundation of China (No. U21B2095)the Major Research Project of National Natural Science Foundation of China (No. 91834303)the Science Fund for Creative Research Groups of National Natural Science Foundation of China (No. 61621002)。
文摘A novel central hole-expansion phenomenon is identified, in which the cation-exchange resin is pyrolyzed in a mixed atmosphere of nitrogen and oxygen at 400–500 ℃. In this reaction, the reaction path is predictable and always starts from the center of the resin particle to form a central hole, then continues and expands around the hole, finally forming a uniformly distributed hole group;the particle surface remains intact. Analysis shows that this formation mode is due to the different reaction paths of sulfonic groups between the surface and interior of the particle, caused by the temperature difference. On the surface, transformation reactions happen at high temperatures(410–500 ℃) to form stable organic sulfur structures, while decomposition occurs inside the particle at a relatively low temperature(<410 ℃) and promotes complete pyrolysis of the copolymer matrix to form holes.
基金supported by Grant-in-Aid for Scientific Research(23615003)in Japan Society for the Promotion of Science(JSPS)
文摘A combination of hydrophilic interaction chromatographic(HILIC) column and a weakly acidic cation-exchange resin(WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography(IC).Firstly,the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions.The columns used were SeQuant ZIC-HILIC(ZIC-HILIC) with a sulfobetaine-zwitterion stationary phase(ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase(HILIC-10).When using tartaric acid as the eluent,the HILIC columns indicated strong retentions for anions,based on ion-pair interaction.Especially,HILIC-10 could strongly retain anions compared with ZIC-HILIC.The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I-> NO-3 > Br-> Cl-> H2PO-4.However,since HILIC-10 could not separate analyte cations,a WCX column(TSKgel Super IC-A/C) was connected after the HILIC column in series.The combination column system of HILIC and WCX columns could successfully separate ten ions(Na+,NH+4,K+,Mg2+,Ca2+,H2PO-4,Cl-,Br-,NO-3 and I-) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6.The relative standard deviations(RSDs) of analyte ions by the system were in the ranges of 0.02%-0.05% in retention times and 0.18%-5.3% in peak areas through three-time successive injections.The limits of detection at signal-to-noise ratio of 3 were 0.24-0.30 μmol/L for the cations and 0.31-1.2 μmol/L for the anions.This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.
基金the National Basic Research Program of China(Grant No.2014CB643801)the National Natural Science Foundation of China(Grant Nos.51572302 and 21271191)+4 种基金the Joint Funds of the National Natural Science Foundation of China and Guangdong Province(Grant No.U1301242)Teamwork Projects of Guangdong Natural Science Foundation(Grant No.S2013030012842)Guangdong Science&Technology Project(Grant No.2015B090926011)the Natural Science Foundation of Guangdong Province(Grant No.2014A030313114)China Postdoctoral Science Foundation(Grant No.2014M562237)
文摘Red phosphor K2LiA1F6:Mn4+ has been synthesized by a cation-exchange method in HF solution. To optimize their optical properties, phosphors were synthesized using different reaction conditions. The K2LiA1F6:0.5%Mn4+ synthesized at 20℃ for 4 h shows the highest luminescence intensity. The temperature-dependent emission intensity of the phosphor was investigated, and it was found to exhibit good thermal stability, making it a promising red phosphor candidate for warm WLEDs.
文摘A laser trapping-microspectroscopy technique combined with excitation energy transfer from a fluorescent cationic dye (Rhodamine B, RB+) to a non-fluorescent cationic dye (Malachite Green, MG+) was employed to study pH effects on the diffusion coefficients of MG+ (D(MG+)) in single cation-exchange resin microparticles with the diameters of 16 μm. When RB+-pre-adsorbed resin particles were soaked in an aqueous MG+ solution, the RB+ fluorescence was quenched gradually with the soaking time. The time course of the quenching efficiency of RB+ by MG+ was then used to evaluate the D(MG+) value in the particle. The D(MG+) value increased from 1.1 × 10-11 to 4.3 × 10-11 cm2.s–1 on going the solu- tion pH value from 9 to 4. The results were explained reasonably by a Donnan electric potential model.
文摘This study examines the phenomena of the hormone-active fibers obtaining process, in the form of artificial insulin depot. As a fibrous carrier of insulin cation-exchange polyacrylonitrile (PAN) fibers and biodegradable polysaccharide alginate fibers were used. The process of obtaining fibrous artificial insulin depot was based on the chemisorption of insulin from insulin aqueous solutions by these fibers. The parameters of insulin chemisorption reaction were determined and their influence on quantities of bonded insulin in the artificial depot was studied. The impact of fiber polymer nature on the intensity of insulin chemisorption was studied and determined. Also, the location and deposition of insulin in and onto the fiber, fiber topography were studied. The maximum amounts of bounded insulin for the cation-exchange PAN fibers were 395.0 mg porcine insulin chromatographic / g of fiber, and for the alginate fibers were about 300? mg of porcine insulin chromatographic / g of fiber.
文摘The analysis of seven aliphatic carboxylic acids(formic,acetic,propionic,iso-butyric,n-butyric,iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion chromatography with dilute acidic eluents(benzoic acid,perfluorobutyric acid(PFBA) and sulfuric acid) and non-suppressed conductivity/ultraviolet(UV) detection.The columns used were a styrene/divinylbenzene-based strongly acidic cation-exchange resin column(TSKgel SCX) and a polymethacrylate-based weakly acidic cation-exchange resin column(TSKgel Super IC-A/C).Good separation was performed on the TSKgel SCX in shorter retention times.For the TSKgel Super IC-A/C,peak shape of the acids was sharp and symmetrical in spite of longer retention times.In addition,the mutual separation of the acids was good except for iso-and n-butyric acids.The better separation and good detection was achieved by using the two columns(TSKgel SCX and TSKgel Super IC-A/C connected in series),lower concentrations of PFBA and sulfuric acid as eluents,non-suppressed conductivity detection and UV detection at 210 nm.This analysis was applied to anaerobic digestion process waters.The chromatograms with conductivity detection were relatively simpler compared with those of UV detection.The use of two columns with different selectivities for the aliphatic carboxylic acids and the two detection modes was effective for the determination and identification of the analytes in anaerobic digestion process waters containing complex matrices.