Generally speaking,anionic metal concentrations in wastewater from industries and mineral processing plants are well above the allowed limits for effluent set by the Ministry of Environment of Japan. Nowadays,the remo...Generally speaking,anionic metal concentrations in wastewater from industries and mineral processing plants are well above the allowed limits for effluent set by the Ministry of Environment of Japan. Nowadays,the removal of anionic ions has been considered difficult and development of new process is desperately needed. In this paper,we report the development of three hydroxide-type adsorbents,illustrating their adsorption efficiency in removing As,Se,Mo and Sb ions from aqueous solutions. The main finding of this work was that the adsorption behavior was influenced very much by both the pH and the adsorbent concentration. Nevertheless,the newly developed hydroxide-type adsorbents were very effective in reducing the concentration of those anionic ions.展开更多
Study on nanomaterials has attracted great interests in recent years. In this article, zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfac...Study on nanomaterials has attracted great interests in recent years. In this article, zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocrystal size is around 15 nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.展开更多
The properties of aqueous two-phase system (ATPS) of mixed solution containing gemini cationic surfactant trimethylene-1,3-bis(dodecyldimethyl ammonium) bromide (12-3-12, 2Br-) and traditional anionic surfactant sodiu...The properties of aqueous two-phase system (ATPS) of mixed solution containing gemini cationic surfactant trimethylene-1,3-bis(dodecyldimethyl ammonium) bromide (12-3-12, 2Br-) and traditional anionic surfactant sodium dodecyl sulfate (SDS) with or without added salt have been studied. An ATPS is formed in a narrow region of the ternary phase diagram different from that of traditional aqueous cationic-anionic surfactant systems. In ATPS region, the lowest total concentration of surfactants varies with the mixing ratio of geminis to SDS. Photographs obtained from freeze-etching, negative-staining and transmission electron microscopy show that the microstructures of two phases are different from each other. Micelles and vesicles can coexist in a single phase. The addition of salts can change the phase diagram of ATPS. Furthermore, the added salts promote the aggregation of rod-like micelles to form coarse network structure that increase the viscosity of solutions. The negative ions of the added salts are the determining factor.展开更多
Selenium and zinc are used as anionic and cationic dopant elements to dope PbS nanostructures. The undoped and doped PbS nanostructures are grown using a thermal evaporation method. Scanning electron microscopy (SEM...Selenium and zinc are used as anionic and cationic dopant elements to dope PbS nanostructures. The undoped and doped PbS nanostructures are grown using a thermal evaporation method. Scanning electron microscopy (SEM) results show similar morphologies for the undoped and doped PbS nanostructures. X-ray diffraction (XRD) patterns of three sets of the nanostructures indicate that these nanostructures each have a PbS structure with a cubic phase. Evidence of dopant incorporation is demonstrated by X-ray photoelectron spectroscopy (XPS). Raman spectra of the synthesized samples con- firm the XRD results and indicate five Raman active modes, which relate to the PbS cubic phase for all the nanostructures. Room temperature photoluminescence (PL) and UV-Vis spectrometers are used to study optical properties of the undoped and doped PbS nanostructures. Optical characterization shows that emission and absorption peaks are in the infrared (IR) region of the electromagnetic spectrum for all PbS nanostructures. In addition, the optical studies of the doped PbS nanos- tructures reveal that the band gap of the Se-doped PbS is smaller, and the band gap of the Zn-doped PbS is bigger than the band gap of the undoped PbS nanostructures.展开更多
Flotation performance of a de-slimed(-150+53μm)Jordanian siliceous phosphate was evaluated in a batch laboratory flotation column 100 cm high and 5 cm inside diameter.The collector used during anionic flotation wa...Flotation performance of a de-slimed(-150+53μm)Jordanian siliceous phosphate was evaluated in a batch laboratory flotation column 100 cm high and 5 cm inside diameter.The collector used during anionic flotation was sodium oleate while an amine acetate(AEROMINE 3100C)was used for cationic flotation.Flotation comparison at different collector dosage,superficial gas velocity,and frother concentration showed that the maximum difference in performance between cationic and anionic flotation was obtained with these flotation parameters:30×10^(-6)(mg/L)frother concentration,250 g/t collector concentration,and 3.4 cm/s superficial gas velocity.At these operating conditions amine (cationic)flotation gave 7%higher flotation recovery,a 6%cleaner concentrate grade,and was 6%more efficient at removing silica.展开更多
The main purpose of this research work is to improve anti-static properties of Cashmere fabric by introducing application comprising anti-static agent by foaming which was made with cationic waterborne polyurethane an...The main purpose of this research work is to improve anti-static properties of Cashmere fabric by introducing application comprising anti-static agent by foaming which was made with cationic waterborne polyurethane and graphene-CNC. Cashmere fabric was cut into 10 pieces of sample cloth of 5 cm * 5 cm size, washed with acetone solution, and then dried in an oven at 60℃. Three forms of waterborne polyurethanes such as two forms of Cationic waterborne polyurethane (CWPU) and a form of Anionic waterborne polyurethane (AWPU) were synthesized. Cellulose nanocrystalline (CNC)/graphite powder solution with the ratio of 0.5/1, 1/1, 2/1 was prepared by ultrasonic probe stripping method, and the concentration of graphite powder was ensured to be 1 mg/ml. The fabric was treated with anionic and cationic WPUs foaming solution until the weight gain reached 2.5 - 3.5 wt%. After drying, the elastic cloth was foamed with graphene solution until the graphite content of the cloth was close to 10%, 20%, 40%, 60% respectively, and then dried for reserving. Characterization properties of pure graphite powder, pure CNC and graphene solution with different proportions of three components were tested by Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), Thermalgravitimetric analysis (TGA) and scanning electron microscopy (SEM). Take the original cloth, only WPU treated cloth and four clothes with different graphite content for the fabric performance test.展开更多
The main purpose of this work was the modification of NaX nanozeolite using copper oxide nanoparticles and various monovalent cations such as K^+, Cs^+, and Ag^+in order to make the negatively charged zeolite surface ...The main purpose of this work was the modification of NaX nanozeolite using copper oxide nanoparticles and various monovalent cations such as K^+, Cs^+, and Ag^+in order to make the negatively charged zeolite surface accessible for anionic forms of uranium which are the most dominant species of uranium in the contaminated radioactive waters at natural p H. Various methods such as the X-ray fluorescence(XRF), X-ray powder diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FT-IR), and atomic absorption spectroscopy(AAS) were used to characterize the final synthesized absorbents. Batch technique was used to study the adsorption behavior of uranium ions from polluted drinking water by Na X nanozeolite and its modified forms. In order to better understand the performance of them, the results were compared with those that were obtained for synthesizing bulk NaX zeolite and Na-form of clinoptilolite natural zeolite. Preliminary results indicated that uranium sorption increased as the loading level of CuO nanoparticles on NaX nanozeolite increased from 2.1 wt% to 11.2 wt%. In addition,from the obtained data, an increase in uranium removal efficiency resulted as charge/ionic radius ratio of exchanged cation decreased. Also, the effect of contact time, solid–liquid ratio, initial concentration and temperature on the adsorption process was studied. It is worth mentioning that, in this study, the sorption of uranium was performed under natural conditions of pH and the presence of competing cations and anions which are available in drinking waters.展开更多
A star-shaped multifunctional styrene-isoprene copolymer was synthesized with n-BuLi as initiator, divinyl benzene as coupling agent, cyclobexane as solvent by living anionic polymerization. Using this polymer as graf...A star-shaped multifunctional styrene-isoprene copolymer was synthesized with n-BuLi as initiator, divinyl benzene as coupling agent, cyclobexane as solvent by living anionic polymerization. Using this polymer as grafting agent, a novel star-shaped branched polymer, containing several polyisobutylene, was prepared via cationic ~aolymerization. The star PS-b-PI and star-branched polyisobutylene were characterized by GPC, 'HNMR and FT-IR, and the effects of different adding order and the amount of grafting agent were investigated.展开更多
MTBPyP (meso-tetrakis(4-N-benzylpyridyl)porphyrin, M=H-2, Zn) bearing positive charge has been shown to associate with SiW12O404- in water solution. The spectral evolution and Job's plots analyses reveal that the ...MTBPyP (meso-tetrakis(4-N-benzylpyridyl)porphyrin, M=H-2, Zn) bearing positive charge has been shown to associate with SiW12O404- in water solution. The spectral evolution and Job's plots analyses reveal that the relatively stable aggregates contain equal numbers of MTBPyP4(+) and SiW12O404-.展开更多
Employing cathode materials with multiple redox couples and electrolytes with efficient cation transport kinetics are two effective approaches to improving the electrochemical performance of batteries.In this work,for...Employing cathode materials with multiple redox couples and electrolytes with efficient cation transport kinetics are two effective approaches to improving the electrochemical performance of batteries.In this work,for the first time,we present a design strategy of simultaneously realizing reversible cationic and anionic redox chemistries as well as selective anion/cation transport in the viologen-based COFs(BAVCOF:X,coordinated anions of X=Cl^(-),Br^(-),I^(-),and ClO_(4)^(-))for high-performance Na-ion cathodes.Besides the cationic redox of viologen segments,the different redox activities of anions effectively tune the total capacities of the COFs.Meanwhile,electrochemical analysis and ab-initial molecular dynamics(AIMD)calculation illustrate that the anion/cation transport kinetics of electrolytes caged in the COFs'channels can be selectively tuned by the coordinated anions.As a result,combining high-potential Br-/Br_(2)redox couple,cationic redox of viologen segments,and enhanced Na+transport kinetics,the BAV-COF:Brdemonstrates stable performance with energy densities of 358.7 and 145.2 Wh kg^(-1)at power densities of 116.5 and 2124.1 W kg^(-1),respectively.This study offers new insight into the fabrication of organic cathodes with anionic redox and the advantages of COFs electrode materials in anion/cation transport selectivity for energy storage applications.展开更多
Typical cationic and anionic surfactants were chosen and their interactions were calculated by quantum chemical method. Interaction energies are -0.2378 kJ·mol-1, -3.3394kJ·mol-1 and 0.1204kJ·mol-1 for ...Typical cationic and anionic surfactants were chosen and their interactions were calculated by quantum chemical method. Interaction energies are -0.2378 kJ·mol-1, -3.3394kJ·mol-1 and 0.1204kJ·mol-1 for the molecular pairs with fluocarbon and hydrocarbon chain: C4H10/C5H12, C4F10/C5H12, and C4F10 /C5F12, respectively. When hydrophilic group with cationic and anionicions is introduced, interaction energies are -287.40kJ·mol-1, -311.18kJ·mol-1 and -345.83kJ·mol-1. The results show that there is strong static interaction between cationic and anionic surfactants. It has been predicted that mixed monolayer may be formed and surface activity is enhanced favorably, especially for mixtures of cationic and anionic surfactants with fluocarbon and hydrocarbon chains. The anionic surfactants, sodium octadecylbenzenesulfonate perfluopolyetherbenzenesulonate(ANF-I) was synthesized, mixture effects of ANF-I with sodium octadecylbenzenesulfonate or dodecyldimethyl benzylammonium bromide were studied. The results indicate that the efficiency of mixing increased and the theoretical prediction was testified. These results can provide useful information for the design of new surfactants.展开更多
This paper examined the influence of acid, base and salt modifications of clay on its rates of naphthalene adsorption. The modifiers used include hydrochloric acid (HCl), citric acid, sodium hydroxide (NaOH), ammonium...This paper examined the influence of acid, base and salt modifications of clay on its rates of naphthalene adsorption. The modifiers used include hydrochloric acid (HCl), citric acid, sodium hydroxide (NaOH), ammonium hydroxide (NH4OH), sodium chloride (NaCl) and zinc chloride (ZnCl2). The results obtained showed that equilibrium adsorption of naphthalene from the bulk solution was attained at a faster rate using modified clay when compared with the unmodified clay. HCl-modified clay had the highest rate of adsorption with a surface area and porosity of 49.05 mm2 and 53.4%. This was closely followed by NaOH-modified clay while down the order was the ZnCl2-modified clay which had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4%. The implication of the retention time obtained from the equilibrium study is significant as it provides the bench mark for interplay between sorption and degradation for transport and transformation of contaminant solutes within the soil matrix.展开更多
基金21st century of COE program, Mechanical Systems Innovation, by the Ministry Education, Culture, Sports, Science and Technology, Japan.
文摘Generally speaking,anionic metal concentrations in wastewater from industries and mineral processing plants are well above the allowed limits for effluent set by the Ministry of Environment of Japan. Nowadays,the removal of anionic ions has been considered difficult and development of new process is desperately needed. In this paper,we report the development of three hydroxide-type adsorbents,illustrating their adsorption efficiency in removing As,Se,Mo and Sb ions from aqueous solutions. The main finding of this work was that the adsorption behavior was influenced very much by both the pH and the adsorbent concentration. Nevertheless,the newly developed hydroxide-type adsorbents were very effective in reducing the concentration of those anionic ions.
基金Funded by High and New-Technology Project from Science and Technology Department of Fujian Province (No. 2004H008)
文摘Study on nanomaterials has attracted great interests in recent years. In this article, zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocrystal size is around 15 nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.
基金the National Natural Science Foundation of China (No. 20025618, No. 20236010) Shanghai Municipal Education Commission of China.
文摘The properties of aqueous two-phase system (ATPS) of mixed solution containing gemini cationic surfactant trimethylene-1,3-bis(dodecyldimethyl ammonium) bromide (12-3-12, 2Br-) and traditional anionic surfactant sodium dodecyl sulfate (SDS) with or without added salt have been studied. An ATPS is formed in a narrow region of the ternary phase diagram different from that of traditional aqueous cationic-anionic surfactant systems. In ATPS region, the lowest total concentration of surfactants varies with the mixing ratio of geminis to SDS. Photographs obtained from freeze-etching, negative-staining and transmission electron microscopy show that the microstructures of two phases are different from each other. Micelles and vesicles can coexist in a single phase. The addition of salts can change the phase diagram of ATPS. Furthermore, the added salts promote the aggregation of rod-like micelles to form coarse network structure that increase the viscosity of solutions. The negative ions of the added salts are the determining factor.
基金the Iranian National Science Foundation (INSF) for a research grant support the Islamic Azad University(I.A.U.), Masjed-Soleiman and Ahwaz Branches, respectively, for their financial support of this research workthe financial support from the Ministry of Higher Education of Malaysia for the High Impact Research Grant (UM.C/1/HIR/MOHE/SC/21)
文摘Selenium and zinc are used as anionic and cationic dopant elements to dope PbS nanostructures. The undoped and doped PbS nanostructures are grown using a thermal evaporation method. Scanning electron microscopy (SEM) results show similar morphologies for the undoped and doped PbS nanostructures. X-ray diffraction (XRD) patterns of three sets of the nanostructures indicate that these nanostructures each have a PbS structure with a cubic phase. Evidence of dopant incorporation is demonstrated by X-ray photoelectron spectroscopy (XPS). Raman spectra of the synthesized samples con- firm the XRD results and indicate five Raman active modes, which relate to the PbS cubic phase for all the nanostructures. Room temperature photoluminescence (PL) and UV-Vis spectrometers are used to study optical properties of the undoped and doped PbS nanostructures. Optical characterization shows that emission and absorption peaks are in the infrared (IR) region of the electromagnetic spectrum for all PbS nanostructures. In addition, the optical studies of the doped PbS nanos- tructures reveal that the band gap of the Se-doped PbS is smaller, and the band gap of the Zn-doped PbS is bigger than the band gap of the undoped PbS nanostructures.
基金done during the first author's Fulbright fellowship at the Center for Advanced Separation (CAST)/Virginia Technical Institute and State University-USA. Salah would like to thank all the people who work at CAST for their friendship and support during his stay in Blacksburg, VA.
文摘Flotation performance of a de-slimed(-150+53μm)Jordanian siliceous phosphate was evaluated in a batch laboratory flotation column 100 cm high and 5 cm inside diameter.The collector used during anionic flotation was sodium oleate while an amine acetate(AEROMINE 3100C)was used for cationic flotation.Flotation comparison at different collector dosage,superficial gas velocity,and frother concentration showed that the maximum difference in performance between cationic and anionic flotation was obtained with these flotation parameters:30×10^(-6)(mg/L)frother concentration,250 g/t collector concentration,and 3.4 cm/s superficial gas velocity.At these operating conditions amine (cationic)flotation gave 7%higher flotation recovery,a 6%cleaner concentrate grade,and was 6%more efficient at removing silica.
文摘The main purpose of this research work is to improve anti-static properties of Cashmere fabric by introducing application comprising anti-static agent by foaming which was made with cationic waterborne polyurethane and graphene-CNC. Cashmere fabric was cut into 10 pieces of sample cloth of 5 cm * 5 cm size, washed with acetone solution, and then dried in an oven at 60℃. Three forms of waterborne polyurethanes such as two forms of Cationic waterborne polyurethane (CWPU) and a form of Anionic waterborne polyurethane (AWPU) were synthesized. Cellulose nanocrystalline (CNC)/graphite powder solution with the ratio of 0.5/1, 1/1, 2/1 was prepared by ultrasonic probe stripping method, and the concentration of graphite powder was ensured to be 1 mg/ml. The fabric was treated with anionic and cationic WPUs foaming solution until the weight gain reached 2.5 - 3.5 wt%. After drying, the elastic cloth was foamed with graphene solution until the graphite content of the cloth was close to 10%, 20%, 40%, 60% respectively, and then dried for reserving. Characterization properties of pure graphite powder, pure CNC and graphene solution with different proportions of three components were tested by Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), Thermalgravitimetric analysis (TGA) and scanning electron microscopy (SEM). Take the original cloth, only WPU treated cloth and four clothes with different graphite content for the fabric performance test.
基金supported by the University of Isfahan and a little part of financial expenses by Research Institute of Shakhes Pajouhthe cooperation of central laboratory of Water and Sewage Company of Isfahan province (ABFA)
文摘The main purpose of this work was the modification of NaX nanozeolite using copper oxide nanoparticles and various monovalent cations such as K^+, Cs^+, and Ag^+in order to make the negatively charged zeolite surface accessible for anionic forms of uranium which are the most dominant species of uranium in the contaminated radioactive waters at natural p H. Various methods such as the X-ray fluorescence(XRF), X-ray powder diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FT-IR), and atomic absorption spectroscopy(AAS) were used to characterize the final synthesized absorbents. Batch technique was used to study the adsorption behavior of uranium ions from polluted drinking water by Na X nanozeolite and its modified forms. In order to better understand the performance of them, the results were compared with those that were obtained for synthesizing bulk NaX zeolite and Na-form of clinoptilolite natural zeolite. Preliminary results indicated that uranium sorption increased as the loading level of CuO nanoparticles on NaX nanozeolite increased from 2.1 wt% to 11.2 wt%. In addition,from the obtained data, an increase in uranium removal efficiency resulted as charge/ionic radius ratio of exchanged cation decreased. Also, the effect of contact time, solid–liquid ratio, initial concentration and temperature on the adsorption process was studied. It is worth mentioning that, in this study, the sorption of uranium was performed under natural conditions of pH and the presence of competing cations and anions which are available in drinking waters.
文摘A star-shaped multifunctional styrene-isoprene copolymer was synthesized with n-BuLi as initiator, divinyl benzene as coupling agent, cyclobexane as solvent by living anionic polymerization. Using this polymer as grafting agent, a novel star-shaped branched polymer, containing several polyisobutylene, was prepared via cationic ~aolymerization. The star PS-b-PI and star-branched polyisobutylene were characterized by GPC, 'HNMR and FT-IR, and the effects of different adding order and the amount of grafting agent were investigated.
基金This work was supported by the National NatUral Science Foundation of China under grant! No.29733090 and No. 29803003 the Re
文摘MTBPyP (meso-tetrakis(4-N-benzylpyridyl)porphyrin, M=H-2, Zn) bearing positive charge has been shown to associate with SiW12O404- in water solution. The spectral evolution and Job's plots analyses reveal that the relatively stable aggregates contain equal numbers of MTBPyP4(+) and SiW12O404-.
基金supported by the NSFC/RGC Joint Research Scheme 2020/21(Project No:N_City U104/20)。
文摘Employing cathode materials with multiple redox couples and electrolytes with efficient cation transport kinetics are two effective approaches to improving the electrochemical performance of batteries.In this work,for the first time,we present a design strategy of simultaneously realizing reversible cationic and anionic redox chemistries as well as selective anion/cation transport in the viologen-based COFs(BAVCOF:X,coordinated anions of X=Cl^(-),Br^(-),I^(-),and ClO_(4)^(-))for high-performance Na-ion cathodes.Besides the cationic redox of viologen segments,the different redox activities of anions effectively tune the total capacities of the COFs.Meanwhile,electrochemical analysis and ab-initial molecular dynamics(AIMD)calculation illustrate that the anion/cation transport kinetics of electrolytes caged in the COFs'channels can be selectively tuned by the coordinated anions.As a result,combining high-potential Br-/Br_(2)redox couple,cationic redox of viologen segments,and enhanced Na+transport kinetics,the BAV-COF:Brdemonstrates stable performance with energy densities of 358.7 and 145.2 Wh kg^(-1)at power densities of 116.5 and 2124.1 W kg^(-1),respectively.This study offers new insight into the fabrication of organic cathodes with anionic redox and the advantages of COFs electrode materials in anion/cation transport selectivity for energy storage applications.
文摘Typical cationic and anionic surfactants were chosen and their interactions were calculated by quantum chemical method. Interaction energies are -0.2378 kJ·mol-1, -3.3394kJ·mol-1 and 0.1204kJ·mol-1 for the molecular pairs with fluocarbon and hydrocarbon chain: C4H10/C5H12, C4F10/C5H12, and C4F10 /C5F12, respectively. When hydrophilic group with cationic and anionicions is introduced, interaction energies are -287.40kJ·mol-1, -311.18kJ·mol-1 and -345.83kJ·mol-1. The results show that there is strong static interaction between cationic and anionic surfactants. It has been predicted that mixed monolayer may be formed and surface activity is enhanced favorably, especially for mixtures of cationic and anionic surfactants with fluocarbon and hydrocarbon chains. The anionic surfactants, sodium octadecylbenzenesulfonate perfluopolyetherbenzenesulonate(ANF-I) was synthesized, mixture effects of ANF-I with sodium octadecylbenzenesulfonate or dodecyldimethyl benzylammonium bromide were studied. The results indicate that the efficiency of mixing increased and the theoretical prediction was testified. These results can provide useful information for the design of new surfactants.
文摘This paper examined the influence of acid, base and salt modifications of clay on its rates of naphthalene adsorption. The modifiers used include hydrochloric acid (HCl), citric acid, sodium hydroxide (NaOH), ammonium hydroxide (NH4OH), sodium chloride (NaCl) and zinc chloride (ZnCl2). The results obtained showed that equilibrium adsorption of naphthalene from the bulk solution was attained at a faster rate using modified clay when compared with the unmodified clay. HCl-modified clay had the highest rate of adsorption with a surface area and porosity of 49.05 mm2 and 53.4%. This was closely followed by NaOH-modified clay while down the order was the ZnCl2-modified clay which had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4%. The implication of the retention time obtained from the equilibrium study is significant as it provides the bench mark for interplay between sorption and degradation for transport and transformation of contaminant solutes within the soil matrix.