The uniform cauliflower-like ZnO films were deposited on the conducting substrate by a chemical bath deposition in urea/water solution. The film structure and morphology were characterized by X-ray diffraction, thermo...The uniform cauliflower-like ZnO films were deposited on the conducting substrate by a chemical bath deposition in urea/water solution. The film structure and morphology were characterized by X-ray diffraction, thermo- gravimetric differential thermal analysis, energy dispersive spectroscopy, selected area electron diffraction, field emission scanning electron microscopy and high resolution transmission electron microscopy. The average diameter of ZnO nanoparticles and the petal thickness were 25 nm and 8 μm, respectively. Dye- sensitized solar cells based on the cauliflower-like ZnO film electrode showed the short-circuit current density of 6.08 mA/cm2, the open-circuit photovoltage of 0.66 V, the fill factor of 0.55 and the overall conversion efficiency of 2.18%. The equivalent circuit of cells based on the ZnO film electrodes was measured by the electrochemical impedance spectroscopy. Furthermore, the analysis of equivalent circuit provided the relationship between the cell performance and the interracial resistance, such as the shunt resistance and the series resistance.展开更多
基金support of the National Basic Research Program of China (973 Program,No.2013CB932902)the National Natural Science Foundation of China (No. 21173042)+3 种基金the National Natural Science Foundation of Jiangsu (No. BK201123694)the National Natural Science Foundation of Hebei (No.B2012402006)the Jiangsu Key Laboratory of Environmental Material and Environmental Engineering (No.JHCG201012)the Foundation of Southeast of University (Nos.3212001102 and 3212002205)
文摘The uniform cauliflower-like ZnO films were deposited on the conducting substrate by a chemical bath deposition in urea/water solution. The film structure and morphology were characterized by X-ray diffraction, thermo- gravimetric differential thermal analysis, energy dispersive spectroscopy, selected area electron diffraction, field emission scanning electron microscopy and high resolution transmission electron microscopy. The average diameter of ZnO nanoparticles and the petal thickness were 25 nm and 8 μm, respectively. Dye- sensitized solar cells based on the cauliflower-like ZnO film electrode showed the short-circuit current density of 6.08 mA/cm2, the open-circuit photovoltage of 0.66 V, the fill factor of 0.55 and the overall conversion efficiency of 2.18%. The equivalent circuit of cells based on the ZnO film electrodes was measured by the electrochemical impedance spectroscopy. Furthermore, the analysis of equivalent circuit provided the relationship between the cell performance and the interracial resistance, such as the shunt resistance and the series resistance.