期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于因果关系的故障传播路径辨识方法研究
1
作者 吕佳朋 史贤俊 +1 位作者 秦亮 赵超轮 《系统工程与电子技术》 EI CSCD 北大核心 2023年第12期4090-4100,共11页
针对故障传播路径辨识问题,提出了一种基于因果关系的故障传播路径辨识方法,从因果关系的角度揭示了故障发生及传播的内涵。利用系统中故障发生的因果性,确定故障发生时受影响的变量,构建故障相关变量集合;通过因果关系指示指标确定故... 针对故障传播路径辨识问题,提出了一种基于因果关系的故障传播路径辨识方法,从因果关系的角度揭示了故障发生及传播的内涵。利用系统中故障发生的因果性,确定故障发生时受影响的变量,构建故障相关变量集合;通过因果关系指示指标确定故障相关变量中各个变量的因果性,构建因果矩阵;提出保可达性的赋权有向图最小生成树算法,根据因果矩阵对相关变量之间的因果性进行图示化表达,确定故障相关变量之间的传播影响过程,实现故障传播路径的辨识。所提方法在双带通滤波器电路上进行了实验验证,实验结果表明了所提方法能够正确筛选故障相关变量集合,分析变量之间的因果关系,辨识出故障传播路径,同时所提方法在时间成本上相较于常用的传递熵方法具有一定的优势。 展开更多
关键词 因果关系 结构因果模型 故障传播路径 有向图最小生成树
下载PDF
支持路径分析的仿真因果追溯分析方法
2
作者 石峰 刘颖 +2 位作者 高兴华 齐鸣 王涛 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第18期4780-4783,共4页
通过因果追溯分析对仿真结果作出因果解释是仿真非常重要的一个环节。为了支持因果分析,首先提出扩展事件图,以重构仿真中发生的事件以及事件之间的因果关系;然后根据对图模型的概率参数,分析最可能作用路径和最主要作用路径,以获取更... 通过因果追溯分析对仿真结果作出因果解释是仿真非常重要的一个环节。为了支持因果分析,首先提出扩展事件图,以重构仿真中发生的事件以及事件之间的因果关系;然后根据对图模型的概率参数,分析最可能作用路径和最主要作用路径,以获取更多的知识;最后以一个导弹攻防对抗仿真为例,对以上方法进行了必要的验证。 展开更多
关键词 路径分析 扩展事件图 因果分析 因果解释
下载PDF
An Integrated Causal Path Identification Method
3
作者 FEI Nina YANG Youlong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第4期305-313,共9页
Finding causality merely from observed data is a fundamental problem in science. The most basic form of this causal problem is to determine whether X leads to Y or Y leads to X in the case of joint observation of two ... Finding causality merely from observed data is a fundamental problem in science. The most basic form of this causal problem is to determine whether X leads to Y or Y leads to X in the case of joint observation of two variables X, Y. In statistics, path analysis is used to describe the direct dependence between a set of variables. But in fact, we usually do not know the causal order between variables. However, ignoring the direction of the causal path will prevent researchers from analyzing or using causal models. In this study, we propose a method for estimating causality based on observed data. First, observed variables are cleaned and valid variables are retained. Then, a direct linear non-Gaussian acyclic graph models(DirectLiNGAM) estimates the causal order K between variables. The third step is to estimate the adjacency matrix B of the causal relationship based on K. Next, since B is not convenient for model interpretation, we use adaptive lasso to prune the causal path and variables. Further, a causal path graph and a recursive model are established. Finally, we test and debug the recursive model, obtain a causal model with good fit, and estimate the direct, indirect and total effects between causal variables. This paper overcomes the randomness assigning causal order to variables. This study is different from the researcher’s understanding of his own model by generating some form of simulation data. The simplest and relatively unsmooth statistical learning method used in this study has obvious advantages in the field of interpretable machine learning. 展开更多
关键词 OBSERVED VARIABLE path analysis causal order DIRECT LiNGAM causal path graph causal effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部