Cave roofs are used to support pile foundation in many engineering projects. Accurate stability analysis method of cave roof under pile tip is important in order to ensure the safety of the pile foundation structure. ...Cave roofs are used to support pile foundation in many engineering projects. Accurate stability analysis method of cave roof under pile tip is important in order to ensure the safety of the pile foundation structure. Firstly the mechanical model to analysis the stability of cave roof under pile tip is founded aiming to solve the problems that the simplified mechanical model has. Secondly, the boundary of cave roof is simply supposed to be supported according to the integrity of the rock mass in the boundary of cave roof. Thirdly, based on the theory of plates and shells, the simplified model is calculated and the theoretical calculation formula to determine the safe thickness of cave roof under pile tip can be obtained when the edges of the cave roof are simply supported. In the end, the analysis of the practical engineering project proves the feasibility and the rationality of the method which can be a new method to calculate the safe thickness of cave roof under pile tip.展开更多
According to the engineering features of subgrade cave roof in karst region, the clamped beam model of subgrade cave roof in karst region was set up. Based on the catastrophe theory, the cusp catastrophe model for bea...According to the engineering features of subgrade cave roof in karst region, the clamped beam model of subgrade cave roof in karst region was set up. Based on the catastrophe theory, the cusp catastrophe model for bearing capacity of subgrade cave roof and safe thickness of subgrade cave roof in karst region was established. The necessary instability conditions of subgrade cave roof were deduced, and then the methods to determine safe thickness of cave roofs under piles and bearing capacity of subgrade cave roof were proposed. At the same time, a practical engineering project was applied to verifying this method, which has been proved successfu1ly. At last, the major factors that affect the stability on cave roof under pile in karst region were deeply discussed and some results in quality were acquired.展开更多
Hanging roofs or high hang-ups.a common problem in sublevel caving mining,usually result in a large ore loss and undermine mining safety.This paper analyzed the formation of a hanging roof and showed that increased co...Hanging roofs or high hang-ups.a common problem in sublevel caving mining,usually result in a large ore loss and undermine mining safety.This paper analyzed the formation of a hanging roof and showed that increased confining pressure and reduced free surface were its main characteristics.In order to break down a hanging roof,a new method based on shock wave collision and stress superposition was developed.In this method,two blastholes containing multi-primer at different positions are simultaneously initiated at first.By doing this,a new free surface and a swell room can be created.After these holes are fired,a long delay time is given to the next blasthole so that the fragments from the first twohole blasting have enough time to fall down.This new method was applied to three hanging roofs in one production area,and all of them were successfully broken down.Field inspection indicated that almost no damage was caused in the nearby drifts/tunnels due to the new method.In addition,the far field vibrations were found to be smaller than the maximum vibrations induced by some other blasts.展开更多
A water-resistant key strata model of a goaf floor prior to main roof weighting was developed to explore the relationship between water inrush from the floor and main roof weighting. The stress distribution,broken cha...A water-resistant key strata model of a goaf floor prior to main roof weighting was developed to explore the relationship between water inrush from the floor and main roof weighting. The stress distribution,broken characteristics, and the risk area for water inrush of the water-resistant key strata were analysed using elastic thin plate theory. The formula of the maximum water pressure tolerated by the waterresistant key strata was deduced. The effects of the caved load of the goaf, the goaf size prior to main roof weighting, the advancing distance of the workface or weighting step, and the thickness of the waterresistant key strata on the breaking and instability of the water-resistant key strata were analysed.The results indicate that the water inrush from the floor can be predicted and prevented by controlling the initial or periodic weighting step with measures such as artificial forced caving, thus achieving safe mining conditions above confined aquifers. The findings provide an important theoretical basis for determining water inrush from the floor when mining above confined aquifers.展开更多
基金Project(14JJ4003) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2013M531812) supported by China Postdoctoral Science Foundation+1 种基金Project supported by the Postdoctoral Foundation of Central South UniversityProject(14JJ4003) Project(2013SCEEKL001) supported by Foundation of Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment,China
文摘Cave roofs are used to support pile foundation in many engineering projects. Accurate stability analysis method of cave roof under pile tip is important in order to ensure the safety of the pile foundation structure. Firstly the mechanical model to analysis the stability of cave roof under pile tip is founded aiming to solve the problems that the simplified mechanical model has. Secondly, the boundary of cave roof is simply supposed to be supported according to the integrity of the rock mass in the boundary of cave roof. Thirdly, based on the theory of plates and shells, the simplified model is calculated and the theoretical calculation formula to determine the safe thickness of cave roof under pile tip can be obtained when the edges of the cave roof are simply supported. In the end, the analysis of the practical engineering project proves the feasibility and the rationality of the method which can be a new method to calculate the safe thickness of cave roof under pile tip.
基金Project(50378036) supported by the National Natural Science Foundation of China
文摘According to the engineering features of subgrade cave roof in karst region, the clamped beam model of subgrade cave roof in karst region was set up. Based on the catastrophe theory, the cusp catastrophe model for bearing capacity of subgrade cave roof and safe thickness of subgrade cave roof in karst region was established. The necessary instability conditions of subgrade cave roof were deduced, and then the methods to determine safe thickness of cave roofs under piles and bearing capacity of subgrade cave roof were proposed. At the same time, a practical engineering project was applied to verifying this method, which has been proved successfu1ly. At last, the major factors that affect the stability on cave roof under pile in karst region were deeply discussed and some results in quality were acquired.
文摘Hanging roofs or high hang-ups.a common problem in sublevel caving mining,usually result in a large ore loss and undermine mining safety.This paper analyzed the formation of a hanging roof and showed that increased confining pressure and reduced free surface were its main characteristics.In order to break down a hanging roof,a new method based on shock wave collision and stress superposition was developed.In this method,two blastholes containing multi-primer at different positions are simultaneously initiated at first.By doing this,a new free surface and a swell room can be created.After these holes are fired,a long delay time is given to the next blasthole so that the fragments from the first twohole blasting have enough time to fall down.This new method was applied to three hanging roofs in one production area,and all of them were successfully broken down.Field inspection indicated that almost no damage was caused in the nearby drifts/tunnels due to the new method.In addition,the far field vibrations were found to be smaller than the maximum vibrations induced by some other blasts.
基金supported by the National Natural Science Foundation of China (Nos. 51404013 and 51674008)the Open Projects of State Key Laboratory of Coal Resources and Safe Mining at the China University of Mining and Technology (No. 13KF01)the Natural Science Foundation of Anhui Province (Nos. 1508085ME77 and 1508085QE89)
文摘A water-resistant key strata model of a goaf floor prior to main roof weighting was developed to explore the relationship between water inrush from the floor and main roof weighting. The stress distribution,broken characteristics, and the risk area for water inrush of the water-resistant key strata were analysed using elastic thin plate theory. The formula of the maximum water pressure tolerated by the waterresistant key strata was deduced. The effects of the caved load of the goaf, the goaf size prior to main roof weighting, the advancing distance of the workface or weighting step, and the thickness of the waterresistant key strata on the breaking and instability of the water-resistant key strata were analysed.The results indicate that the water inrush from the floor can be predicted and prevented by controlling the initial or periodic weighting step with measures such as artificial forced caving, thus achieving safe mining conditions above confined aquifers. The findings provide an important theoretical basis for determining water inrush from the floor when mining above confined aquifers.