Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.B...Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.But the caving ratio is low,which might result in some disasters,such as roof falls,induced by local and large area collapse of the top coal in a working face and dangers induced by gas accumulation. After the development of cracks and weakening of the coal body,the tall,broken section of the top coal(a granular medium)of an extremely steep seam(over 60°)shows clear characteristics of nonlinear movement.We have thoroughly analyzed the geological environment and mining conditions of an excavation disturbed zone.Based on the results from a physical experiment of large-scale 3D modeling and coupling simulation of top coal-water-gas,we conclude that the weakened top coal can be regarded as a non-continuous medium.We used a particle flow code program to compare and analyze migration processes and the movements of a 30 m high section top coal over time before and after weakening of an extremely steep seam in the Weihuliang coal mine.The results of our simulation, experiment and monitoring show that pre-injection of water and pre-splitting blasting improve caving ability and symmetrical caving,relieve space for large area dynamic collapse of top coal,prolong migration time of noxious gases and release them from the mined out area and so achieve safety in mining.展开更多
为了从宏观-细观角度探究不同形状矿石颗粒的破碎强度、破碎模式、碎块尺寸分布及断口表面形貌等破碎特性,首先,基于三维扫描技术重构矿石颗粒图像,获取颗粒形状参数;其次,定量表征矿石颗粒外部宏观层次轮廓形态及细观层次凹凸度;最后,...为了从宏观-细观角度探究不同形状矿石颗粒的破碎强度、破碎模式、碎块尺寸分布及断口表面形貌等破碎特性,首先,基于三维扫描技术重构矿石颗粒图像,获取颗粒形状参数;其次,定量表征矿石颗粒外部宏观层次轮廓形态及细观层次凹凸度;最后,对扫描后的几何平均粒径范围为20~45 mm的不规则磁铁矿矿石颗粒进行单颗粒压缩破碎试验,并重构颗粒断口表面以定量探究断面粗糙度的影响因素。研究结果表明:矿石颗粒的破碎强度分布可用Weibull函数模型拟合,其中Weibull参数m为2.17,特征强度F0为7.20 k N;矿石颗粒破碎模式分为边部磨损、中部破碎、贯通缝破坏、随机开裂4种类型;中部破碎为主要破碎模式,占比为0.433,“第一尺寸碎块”及“第二尺寸碎块”质量分数分布均符合正态分布,均值分别在0.65和0.30左右;但当颗粒3个主维度长度接近时,颗粒不容易发生中部破碎。以分形维数D定量表征颗粒破碎断口表面粗糙度,当截面面积大于36 mm^(2)时,分形维数D更稳定。球度显著影响颗粒破碎断口表面平均分形维数D,扁平度、能量、棱角度及等效粒径4种因素影响程度次之且相近,延伸率的影响不存在统计学差异。展开更多
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.11002021)the Doctoral Subject Foundation of the Ministry of Education of China(No.20070008012)the National High Technology Research and Development Program(No.2008AA062104)
文摘Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.But the caving ratio is low,which might result in some disasters,such as roof falls,induced by local and large area collapse of the top coal in a working face and dangers induced by gas accumulation. After the development of cracks and weakening of the coal body,the tall,broken section of the top coal(a granular medium)of an extremely steep seam(over 60°)shows clear characteristics of nonlinear movement.We have thoroughly analyzed the geological environment and mining conditions of an excavation disturbed zone.Based on the results from a physical experiment of large-scale 3D modeling and coupling simulation of top coal-water-gas,we conclude that the weakened top coal can be regarded as a non-continuous medium.We used a particle flow code program to compare and analyze migration processes and the movements of a 30 m high section top coal over time before and after weakening of an extremely steep seam in the Weihuliang coal mine.The results of our simulation, experiment and monitoring show that pre-injection of water and pre-splitting blasting improve caving ability and symmetrical caving,relieve space for large area dynamic collapse of top coal,prolong migration time of noxious gases and release them from the mined out area and so achieve safety in mining.
文摘为了从宏观-细观角度探究不同形状矿石颗粒的破碎强度、破碎模式、碎块尺寸分布及断口表面形貌等破碎特性,首先,基于三维扫描技术重构矿石颗粒图像,获取颗粒形状参数;其次,定量表征矿石颗粒外部宏观层次轮廓形态及细观层次凹凸度;最后,对扫描后的几何平均粒径范围为20~45 mm的不规则磁铁矿矿石颗粒进行单颗粒压缩破碎试验,并重构颗粒断口表面以定量探究断面粗糙度的影响因素。研究结果表明:矿石颗粒的破碎强度分布可用Weibull函数模型拟合,其中Weibull参数m为2.17,特征强度F0为7.20 k N;矿石颗粒破碎模式分为边部磨损、中部破碎、贯通缝破坏、随机开裂4种类型;中部破碎为主要破碎模式,占比为0.433,“第一尺寸碎块”及“第二尺寸碎块”质量分数分布均符合正态分布,均值分别在0.65和0.30左右;但当颗粒3个主维度长度接近时,颗粒不容易发生中部破碎。以分形维数D定量表征颗粒破碎断口表面粗糙度,当截面面积大于36 mm^(2)时,分形维数D更稳定。球度显著影响颗粒破碎断口表面平均分形维数D,扁平度、能量、棱角度及等效粒径4种因素影响程度次之且相近,延伸率的影响不存在统计学差异。