期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Sensitivity analysis of influencing parameters in cavern stability 被引量:9
1
作者 Abolfazl Abdollahipour Reza Rahmannejad 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期707-710,共4页
In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of c... In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of cavern,a sensitivity analysis has been performed on a single cavern in various rock mass qualities according to RMR using Phase 2.The stability of cavern has been studied by investigating the side wall deformation.Results showed that most sensitive properties are coefficient of lateral stress and modulus of deformation.Also parameters of Hoek-Brown criterion and r c have no sensitivity when cavern is in a perfect elastic state.But in an elasto-plastic state,parameters of Hoek-Brown criterion and r c affect the deformability;such effect becomes more remarkable with increasing plastic area.Other parameters have different sensitivities concerning rock mass quality(RMR).Results have been used to propose the best set of parameters for study on prediction of sidewall displacement. 展开更多
关键词 Sensitivity analysis cavern stability Numerical methods RMR rating system
下载PDF
Design and operation problems related to water curtain system forunderground water-sealed oil storage caverns 被引量:5
2
作者 Zhongkui Li Baoqi Lu +2 位作者 Jing Zou Bin Xu Zhizeng Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期689-696,共8页
The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been bu... The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years’ experiences obtained from the first large-scale (millions of cubic meters) underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles for design and construction of the underground water-sealed oil storage caverns are proposed. 展开更多
关键词 Underground water-sealed oil storage caverns Water curtain system Design concept and method cavern stability and safety
下载PDF
Stability analysis and determination of rock pillar between two adjacent caverns in different regions of Asmari formation in Iran
3
作者 Abdollahipour Abolfazl Ghannadshirazi Hossein 《International Journal of Mining Science and Technology》 SCIE EI 2014年第5期593-596,共4页
Large underground caverns are commonly used in variety of applications. In many cases, because of the geomechanical limitations of dimensions and requirement of high volume, several parallel caverns are used. Plastic ... Large underground caverns are commonly used in variety of applications. In many cases, because of the geomechanical limitations of dimensions and requirement of high volume, several parallel caverns are used. Plastic zone integration requires a larger rock pillar distance of theses adjacent caverns while eco- nomic and access reasons require smaller distance. In lran many underground projects are located in West and South West, Asmari formation covers a large part of these regions. The stability of underground spaces that are constructed or will be constructed in this formation has been investigated. A proper cross section based on plastic analysis and a stability criterion has been proposed for each region. Finally, in each case, allowable rock pillar between adjacent caverns with similar dimension was determined with two methods (numerical analysis and fire service law). Results show that Fire Service Law uses a very con- servative safety factor and it was proposed to use a correction factor for allowable distance based on application of underground space. 展开更多
关键词 Stability analysis Storage cavern Numerical analysis Rock pillar Asmari formation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部