In the present paper,the unsteady cavitating turbulent flow over the twisted NACA66 hydrofoil is investigated based on an modified shear stress transfer k-ωpartially averaged Navier-Stokes(MSST PANS)model,i.e.,new MS...In the present paper,the unsteady cavitating turbulent flow over the twisted NACA66 hydrofoil is investigated based on an modified shear stress transfer k-ωpartially averaged Navier-Stokes(MSST PANS)model,i.e.,new MSST PANS(NMSST PANS)model,where the production term of kinetic energy in the turbulence model is modified with helicity.Compared with the experimental data,cavitation evolution and its characteristic frequency are satisfactorily predicted by the proposed NMSST PANS model.It is revealed that the interaction among the main flow,the reentrant jets,and sheet cavitation causes the formation of the primary shedding cavity near the mid-span and the secondary shedding cavity at each side of the twisted hydrofoil,and further induces the remarkable pressure gradient around shedding cavities.Along with the development of the primary and the secondary shedding cavities,the great pressure gradient associated with large cavity volume variation promotes the vortical flow generation and the spatial deformation of vortex structure during cavitation evolution,and results in the primary and the secondary U-type vortices.Further,dynamic mode decomposition(DMD)analysis is utilized to confirm the interaction among the main flow,the main reentrant jet and two side reentrant jets,and cavitation.These results indicate that the proposed NMSST PANS model is suitable to simulate the complicated cavitating turbulent flow for various engineering applications.展开更多
The objective of this paper is to investigate the compressible turbulent cavitating flows with special emphasis on shock wave dynamics, with the water/vapor compressibility taken into account. The simulations are perf...The objective of this paper is to investigate the compressible turbulent cavitating flows with special emphasis on shock wave dynamics, with the water/vapor compressibility taken into account. The simulations are performed by solving the compressible, multiphase unsteady Reynolds-averaged Navier-Stokes equations with Saito cavitation model and SST-SAS turbulence model. The compressibility of both the pure water and vapor is considered by employment of the Tait equation of state for water and ideal gas equation of state for vapor. Results are presented for a 3-D NACA66 hydrofoil fixed at ?= 6? and ?= 1.25 in partial cavitating flows. Cavity collapse induced shock wave formation and propagation, which is closely related to the compressibility characteristics of cavitating flows, are well predicted. Good performance has been obtained for both the cavity evolution process and cavitation induced pressure signals, especially the cavity collapse induced shock wave emission and its interaction with the attached cavity sheet. The pressure peaks in microseconds accompanying the shock wave are captured. The typical quasi-periodic sheet/cloud cavitation evolution is characterized by the following four stages:(1) the growth of the attached cavity sheet,(2) development of re-entrant flow and attached cavity sheet breakup,(3) attached cavity sheet rolling up and cavity cloud shedding, and(4) cloud cavity collapse, shock wave emission and propagation. The cloud cavity collapse induced shock wave dynamics is supposed to be the major origin of cavitation instabilities.展开更多
This paper mainly summarizes the recent progresses for the cavitation study in the hydraulic machinery including turbo- pumps, hydro turbines, etc.. Especially, the newly developed numerical methods for simulating cav...This paper mainly summarizes the recent progresses for the cavitation study in the hydraulic machinery including turbo- pumps, hydro turbines, etc.. Especially, the newly developed numerical methods for simulating cavitating turbulent flows and the achievements with regard to the complicated flow features revealed by using advanced optical techniques as well as cavitation simulation are introduced so as to make a better understanding of the cavitating flow mechanism for hydraulic machinery. Since cavitation instabilities are also vital issue and rather harmful for the operation safety of hydro machines, we present the 1-D analysis method, which is identified to be very useful for engineering applications regarding the cavitating flows in inducers, turbine draft tubes, etc. Though both cavitation and hydraulic machinery are extensively discussed in literatures, one should be aware that a few problems still remains and are open for solution, such as the comprehensive understanding of cavitating turbulent flows especially inside hydro turbines, the unneglectable discrepancies between the numerical and experimental data, etc.. To further promote the study of cavitation in hydraulic machinery, some advanced tooics such as a Density-Based solver suitable for highly comoressible cavitating turbulent flows, a virtual cavitation tunnel, etc. are addressed for the future works.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.52336001).
文摘In the present paper,the unsteady cavitating turbulent flow over the twisted NACA66 hydrofoil is investigated based on an modified shear stress transfer k-ωpartially averaged Navier-Stokes(MSST PANS)model,i.e.,new MSST PANS(NMSST PANS)model,where the production term of kinetic energy in the turbulence model is modified with helicity.Compared with the experimental data,cavitation evolution and its characteristic frequency are satisfactorily predicted by the proposed NMSST PANS model.It is revealed that the interaction among the main flow,the reentrant jets,and sheet cavitation causes the formation of the primary shedding cavity near the mid-span and the secondary shedding cavity at each side of the twisted hydrofoil,and further induces the remarkable pressure gradient around shedding cavities.Along with the development of the primary and the secondary shedding cavities,the great pressure gradient associated with large cavity volume variation promotes the vortical flow generation and the spatial deformation of vortex structure during cavitation evolution,and results in the primary and the secondary U-type vortices.Further,dynamic mode decomposition(DMD)analysis is utilized to confirm the interaction among the main flow,the main reentrant jet and two side reentrant jets,and cavitation.These results indicate that the proposed NMSST PANS model is suitable to simulate the complicated cavitating turbulent flow for various engineering applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.91752105)the Natural Science Foundation of Beijing(Grant No.3172029)
文摘The objective of this paper is to investigate the compressible turbulent cavitating flows with special emphasis on shock wave dynamics, with the water/vapor compressibility taken into account. The simulations are performed by solving the compressible, multiphase unsteady Reynolds-averaged Navier-Stokes equations with Saito cavitation model and SST-SAS turbulence model. The compressibility of both the pure water and vapor is considered by employment of the Tait equation of state for water and ideal gas equation of state for vapor. Results are presented for a 3-D NACA66 hydrofoil fixed at ?= 6? and ?= 1.25 in partial cavitating flows. Cavity collapse induced shock wave formation and propagation, which is closely related to the compressibility characteristics of cavitating flows, are well predicted. Good performance has been obtained for both the cavity evolution process and cavitation induced pressure signals, especially the cavity collapse induced shock wave emission and its interaction with the attached cavity sheet. The pressure peaks in microseconds accompanying the shock wave are captured. The typical quasi-periodic sheet/cloud cavitation evolution is characterized by the following four stages:(1) the growth of the attached cavity sheet,(2) development of re-entrant flow and attached cavity sheet breakup,(3) attached cavity sheet rolling up and cavity cloud shedding, and(4) cloud cavity collapse, shock wave emission and propagation. The cloud cavity collapse induced shock wave dynamics is supposed to be the major origin of cavitation instabilities.
基金Project supported by the National Natural Science Foun-dation of China(Grant No.51536008)the Beijing Key Laboratory Development Project(Grant No.Z151100001615006)
文摘This paper mainly summarizes the recent progresses for the cavitation study in the hydraulic machinery including turbo- pumps, hydro turbines, etc.. Especially, the newly developed numerical methods for simulating cavitating turbulent flows and the achievements with regard to the complicated flow features revealed by using advanced optical techniques as well as cavitation simulation are introduced so as to make a better understanding of the cavitating flow mechanism for hydraulic machinery. Since cavitation instabilities are also vital issue and rather harmful for the operation safety of hydro machines, we present the 1-D analysis method, which is identified to be very useful for engineering applications regarding the cavitating flows in inducers, turbine draft tubes, etc. Though both cavitation and hydraulic machinery are extensively discussed in literatures, one should be aware that a few problems still remains and are open for solution, such as the comprehensive understanding of cavitating turbulent flows especially inside hydro turbines, the unneglectable discrepancies between the numerical and experimental data, etc.. To further promote the study of cavitation in hydraulic machinery, some advanced tooics such as a Density-Based solver suitable for highly comoressible cavitating turbulent flows, a virtual cavitation tunnel, etc. are addressed for the future works.