Biofouling on ships and offshore structures has always been a difficult problem to solve,which not only jeopardizes the structural strength but also brings great economic losses.Ultrasonic cavitation is expected to so...Biofouling on ships and offshore structures has always been a difficult problem to solve,which not only jeopardizes the structural strength but also brings great economic losses.Ultrasonic cavitation is expected to solve this problem due to its characteristics of no damage to structures and no pollution.Starting from the phenomenon and mechanism of ultrasonic cleaning,this paper introduces the application of ultrasonic cavitation in ship,pipeline and oil cleaning as well as ballast water treatment.By reviewing the existing studies,limitations such as insufficient ultrasonic parameter studies,lack of uniform cleanliness standards,and insufficient cavitation studies are summarized to provide traceable research ideas for improving ultrasonic cavitation technology and to guide the expansion and improvement of its applications.展开更多
Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which...Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging."展开更多
Recent activities on cavitation research in the Institute of High Speed Mechanics,Tohoku University,Japan are reviewed.Firstly,our recent research project on cavitation occurrence in various liquids other than water i...Recent activities on cavitation research in the Institute of High Speed Mechanics,Tohoku University,Japan are reviewed.Firstly,our recent research project on cavitation occurrence in various liquids other than water is explained in relation to the thermodynamic and gas content effects.Secondly,study on cavitation damage is introduced.In this field,the mechanism of a single bubble collapse near solid wall and the related pit formation in soft test materials have been investigated.Also,the effects of fluid properties on the cavitation damage are clarified.Finally,a special study on shock wave propagating through gas- liquid two-phase magnetic fluid is explained to extend further developments of cavitation research.展开更多
The dynamics of the bubble collapse near a rigid boundary is a fundamental issue for the bubble collapse application and prevention. In this paper, the bubble collapse is modeled by adopting the lattice Boltzmann meth...The dynamics of the bubble collapse near a rigid boundary is a fundamental issue for the bubble collapse application and prevention. In this paper, the bubble collapse is modeled by adopting the lattice Boltzmann method (LBM) and is verified, and then the dynamic characteristics of the collapsing bubble with the second collapse is investigated. The widely used Shan-Chen model in the LBM multiphase community is modified by coupling with the Carnahan-Starling equation of state (C-S EOS) and the exact difference method (EDM) for the forcing term treatment. The simulation results of the bubble profile evolution by the LBM are in excellent agreements with the theoretical and experimental results. From the two-dimensional pressure field evolution, the dynamic characteristics of the different parts during the bubble collapse stage are studied. The role of the second collapse in the rigid boundary damage is discussed, and the impeding effect between two collapses is demonstrated.展开更多
基金Supported by the National Natural Science Foundation of China(No.52101373)Shenzhen Science and Technology Program(No.CYJ20230807145621043)+2 种基金Postdoctoral Science Foundation of China(No.2021M692629)Young Talent Fund of the University Association for Science and Technology in Shaanxi,China(No.20210417)Fundamental Research Funds for the Central Universities(No.3102021HHZY030009).
文摘Biofouling on ships and offshore structures has always been a difficult problem to solve,which not only jeopardizes the structural strength but also brings great economic losses.Ultrasonic cavitation is expected to solve this problem due to its characteristics of no damage to structures and no pollution.Starting from the phenomenon and mechanism of ultrasonic cleaning,this paper introduces the application of ultrasonic cavitation in ship,pipeline and oil cleaning as well as ballast water treatment.By reviewing the existing studies,limitations such as insufficient ultrasonic parameter studies,lack of uniform cleanliness standards,and insufficient cavitation studies are summarized to provide traceable research ideas for improving ultrasonic cavitation technology and to guide the expansion and improvement of its applications.
文摘Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging."
文摘Recent activities on cavitation research in the Institute of High Speed Mechanics,Tohoku University,Japan are reviewed.Firstly,our recent research project on cavitation occurrence in various liquids other than water is explained in relation to the thermodynamic and gas content effects.Secondly,study on cavitation damage is introduced.In this field,the mechanism of a single bubble collapse near solid wall and the related pit formation in soft test materials have been investigated.Also,the effects of fluid properties on the cavitation damage are clarified.Finally,a special study on shock wave propagating through gas- liquid two-phase magnetic fluid is explained to extend further developments of cavitation research.
基金Project supported by the National Natural Science Foun-dation of China(Grant Nos.11274092,11274091 and 1140040119)the Natural Science Foundation of Jiangsu Province(Grant No.SBK2014043338)
文摘The dynamics of the bubble collapse near a rigid boundary is a fundamental issue for the bubble collapse application and prevention. In this paper, the bubble collapse is modeled by adopting the lattice Boltzmann method (LBM) and is verified, and then the dynamic characteristics of the collapsing bubble with the second collapse is investigated. The widely used Shan-Chen model in the LBM multiphase community is modified by coupling with the Carnahan-Starling equation of state (C-S EOS) and the exact difference method (EDM) for the forcing term treatment. The simulation results of the bubble profile evolution by the LBM are in excellent agreements with the theoretical and experimental results. From the two-dimensional pressure field evolution, the dynamic characteristics of the different parts during the bubble collapse stage are studied. The role of the second collapse in the rigid boundary damage is discussed, and the impeding effect between two collapses is demonstrated.