Wave-induced harbour resonance is numerically investigated inside a harbour with lateral cavities.The theoretical solutions for the amplification parameter are compared with the simulated results under varying dimensi...Wave-induced harbour resonance is numerically investigated inside a harbour with lateral cavities.The theoretical solutions for the amplification parameter are compared with the simulated results under varying dimensionless wave numbers in order to verify the simulation model in a rectangular harbour at a constant depth.The results indicate that the numerical model can correctly calculate the natural frequency and the natural wave height.A range of calculations are performed for harbour resonance with one pair of lateral cavities,two pairs of lateral cavities and three pairs of lateral cavities,respectively.The simulated results indicate that the amplitude of the amplification parameter decreases both at the primary natural oscillation and the secondary natural oscillation,as the number of lateral cavities increases.The dimensionless wave number reduces as the number of lateral cavities increases both at the primary natural oscillation and the secondary natural oscillation as well.展开更多
The development of fracture around pre-existing cylindrical cavities in brittle rocks was examined using physical models and acoustic emission technique. The experimental results indicate that when granite blocks cont...The development of fracture around pre-existing cylindrical cavities in brittle rocks was examined using physical models and acoustic emission technique. The experimental results indicate that when granite blocks containing one pre-existing cylindrical cavity are loaded in uniaxial compression condition, the profiles of cracks around the cavity can be characterized by tensile cracking (splitting parallel to the axial compression direction) at the roof-floor, compressive crack at two side walls, and remote or secondary cracks at the perimeter of the cavity. Moreover, fracture around cavity is size-dependent. In granite blocks containing pre-existing half-length cylindrical cavities, compressive stress concentration is found to initiate at the two sidewalls and induce shear crack propagation and coalescence. In granite blocks containing multiple parallel cylindrical cavities, the adjacent cylindrical cavities can influence each other and the eventual failure mode is determined by the interaction of tensile, compressive and shear stresses. Experimental results show that both tensile and compressive stresses play an important role in fracture evolution process around cavities in brittle rocks.展开更多
In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based...In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based on the equivalence principle.The CRCP slab is analyzed to determine the cavity position beneath the slab under vehicle loading. The influences of cavity size on the CRCP slab's stress and vertical displacement are investigated. The study results showthat the formation of the cavity is unavoidable under traffic loading, and the cavity is located at the edge of the longitudinal crack and the slab corner.The cavity size exerts an obvious influence on the largest horizontal tensile stress and vertical displacement. The slab corner is the critical load position of the CRCP slab. The results can be used to assist the design of CRCP in avoiding cavities beneath slabs subject to vehicle loading.展开更多
In this paper,an analytic method is developed to address steady SH-wave scattering and perform dynamic analysis of multiple circular cavities in half space.The scattered wave function used for scattering of SH-waves b...In this paper,an analytic method is developed to address steady SH-wave scattering and perform dynamic analysis of multiple circular cavities in half space.The scattered wave function used for scattering of SH-waves by multiple circular cavities,which automatically satisfies the stress-free condition at the horizontal surface,is constructed by applying the symmetry of the SH-wave scattering and the method of multi-polar coordinates system.Applying this scattered wave function and method of moving coordinates,the original problem can be transformed to the problem of SH-wave scattering by multiple circular cavities in the full space.Finally,the solution of the problem can be reduced to a series of algebraic equations and solved numerically by truncating the infinite algebraic equations to the finite ones.Numerical examples are provided for case with two cavities to show the effect of wave number,and the distances between the centers of the cavities and from the centers to the ground surface on the dynamic stress concentration around the cavity impacted by incident steady SH-wave.展开更多
The dynamic behaviour of the two-site coupled cavities model which is doped with ta wo-level system is investi-gated. The exact dynamic solutions in the general condition are obtained via Laplace transform. The simple...The dynamic behaviour of the two-site coupled cavities model which is doped with ta wo-level system is investi-gated. The exact dynamic solutions in the general condition are obtained via Laplace transform. The simple analytical solutions are obtained in several particular cases, which demonstrate the clear and simple physical picture for the quan-tum state transition of the system. In the large detuning or hoppling case, the quantum states transferring between qubits follow a slow periodic oscillation induced by the very weak excitation of the cavity mode. In the large coupling case, the system can be interpreted as two Jaynes-Cummings model subsystems which interact through photon hop between the two cavities. In the case of λ≈△〉〉 g, the quantum states transition of qubits is accompanied by the excitation of the cavity, and the cavity modes have the same dynamic behaviours and the amplitude of probability is equM to 0.25 which does not change with the variation of parameter.展开更多
Aprogram applying an algorithm of finite-difference time-domain method is established that can be used to calculate the resonant frequencies of cavities of arbitrary modes, coupled with the discrete Fourier transform....Aprogram applying an algorithm of finite-difference time-domain method is established that can be used to calculate the resonant frequencies of cavities of arbitrary modes, coupled with the discrete Fourier transform. Several coaxial resonators including the empty coaxial cavity, re-enrant coaxial cavity and partially stepped resonator are studied with this method, especially the spurious mode resonant frequencies of coaxial cavi- ties. The numerical results thus obtained are shown to be in excellent agreement with those obtainable through rigorous theoretical solutions and experiment results.展开更多
The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure.Osteoclasts are one of the three main bone cell types that play a crucial role in th...The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure.Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle.At the microstructural level,osteoclasts create bone deficits by eroding resorption cavities.Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging,but maybe even more so in quantifying their role in metabolic bone diseases.Meta-bolic bone diseases and their treatment are both known to affect the bone remodelling cycle;hence,the bone mechanical competence can and will be affected.How-ever,the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited.This is not surprising considering the difficulties in deriving three-dimensional(3D)properties from two-dimensional(2D)histological sections.The measurement difficulties are reflected in the evalua-tion of how resorption cavities affect bone competence.Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities,the representation of the cavities themselves has basicallybeen limited to simplified shapes and averaged cavityproperties.Qualitatively,these models indicate that cav-ity size and location are important,and that the effectof cavities is larger than can be expected from simplebone loss.In summary,the dimensions of osteoclastresorption cavities were until recently estimated from2D measures;hence,a careful interpretation of resorp-tion cavity dimensions is necessary.More effort needsto go into correctly quantifying resorption cavities usingmodern 3D imaging techniques like micro-computedtomography(micro-CT)and synchrotron radiation CT.Osteoclast resorption cavities affect bone competence.The structure-function relationships have been ana-lysed using computational models that,on one hand,provide rather detailed information on trabecular bonestructure,but on the other incorporate rather crudeassumptions on cavity dimensions.The use of high-resolution representations and parametric descriptionscould be potential routes to improve the quantitativefidelity of these models.展开更多
A series solution for surface motion amplification due to underground group cavities for incident plane P waves is derived by Fourier-Bessel series expansion method. It is shown that underground group cavities signifi...A series solution for surface motion amplification due to underground group cavities for incident plane P waves is derived by Fourier-Bessel series expansion method. It is shown that underground group cavities significantly am-plify the surface ground motion nearby. It is suggested that the effect of subways on ground motion should be con-sidered when the subways are planned and designed.展开更多
The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun(BLPG).Experiments on the interaction of twin combustion gas jets and liquid medium in...The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun(BLPG).Experiments on the interaction of twin combustion gas jets and liquid medium in a cylindrical stepped-wall combustion chamber are conducted in detail to obtain time series processes of jet expansion,and a numerical simulation under the same working conditions is also conducted to verify the reliability of the numerical method by comparing numerical results and experimental results.From this,numerical simulations on mutual interference and expansion characteristics of multiple combustion gas jets(four,six,and eight jets) in liquid medium are carried out,and the distribution characteristic of pressure,velocity,temperature,and evolutionary processes of Taylor cavities and streamlines of jet flow Held are obtained in detail.The results of numerical simulations show that when different numbers of combustion gas jets expand in liquid medium,there are two different types of vortices in the jet flow field,including corner vortices of liquid phase near the step and backflow vortices of gas phase within Taylor cavities.Because of these two types of vortices,the radial expansion characteristic of the jets is increased,while changing numbers of combustion gas jets can restrain Kelvin-Helmholtz instability to a certain degree in jet expansion processes,which can at last realize the goal of controlling the interior ballistic stability of a BLPG.The optimum method for both suppressing Kelvin-Helmholtz instability and promoting radial expansion of Taylor cavities can be determined by analyzing the change of characteristic parameters in a jet flow field.展开更多
The time-history responses of the surface were obtained for a linear elastic half-plane including regularly distributed enormous embedded circular cavities subjected to propagating obliquely incident plane SH-waves. A...The time-history responses of the surface were obtained for a linear elastic half-plane including regularly distributed enormous embedded circular cavities subjected to propagating obliquely incident plane SH-waves. An advanced numerical approach named half-plane time-domain boundary element method(BEM), which only located the meshes around the cavities, was used to create the model. By establishing the modified boundary integral equation(BIE)independently for each cavity and forming the matrices, the final coupled equation was solved step-by-step in the timedomain to obtain the boundary values. The responses were developed for a half-plane with 512 cavities. The amplification patterns were also obtained to illustrate the frequencydomain responses for some cases. According to the results,the presence of enormous cavities affects the scattering and diffraction of the waves arrived to the surface. The introduced method can be recommended for geotechnical/mechanical engineers to model structures in the fields of earthquake engineering and composite materials.展开更多
When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fie...When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the enviroment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.展开更多
A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as...A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as a aseful way to improve Q0 of the superconducting cavity in recent years. N-doping researches with 1.3 GHz single cell cavities are carried out at Peking University and the preliminary results are promising. Our recipe is slightly different from other laboratories. After 250μm polishing, high pressure rinsing and 3 h high temperature annealing, the cavities are nitrogen doped at 2.7-4.0Pa for 20rain and then followed by 15μm electropolishing. Vertical test results show that Q0 of a 1.3 GHz single cell cavity made of large grain niobium has increased to 4 ×10 10 at 2.0K and medium gradient.展开更多
In this paper, the entanglement dynamics of two two-level atoms trapped in coupled cavities with a Kerr medium is investigated, We find that the phenomena of entanglement sudden death (ESD) and entanglement sudden b...In this paper, the entanglement dynamics of two two-level atoms trapped in coupled cavities with a Kerr medium is investigated, We find that the phenomena of entanglement sudden death (ESD) and entanglement sudden birth (ESB) appear during the evolution process. The influences of initial atomic states, Kerr medium, and cavity-cavity hopping rate on the atom-atom entanglement are discussed. The results obtained by the numerical method show that the atom- atom entanglement is strengthened and even prevented from ESD with increasing cavity-cavity hopping rate and Kerr nonlinearity.展开更多
We demonstrate the hybridization of the plasmonic modes in directly coupled whispering gallery cavities fabricated on silver films and present the mode patterns and energy levels using cathodoluminescence spectroscopy...We demonstrate the hybridization of the plasmonic modes in directly coupled whispering gallery cavities fabricated on silver films and present the mode patterns and energy levels using cathodoluminescence spectroscopy. Although the energy of the most antisymmetrically coupled modes is higher than that of the corresponding symmetrically coupled ones, the contrary cases happen for small quantum number modes. We attribute the phenomenon to the different surface plasmon polariton paths between the symmetrically and antisymmetrically coupled modes; These results provide an understanding of the resonant properties in coupled plasmonic cavities, which have potential applications in nanophotonic devices.展开更多
Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entangl...Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entanglement dynamics initiated from the well-known Bell states is derived, which is very close to the numerical exact results up to the ultrastrong coupling regime. It is found that the vanishing entanglement can be purely induced by the counter-rotating terms, and can be enhanced with the atom-cavity coupling.展开更多
The formation of cavities in silicon carbide is vitally useful to“smart-cut”and metal gettering in semiconductor industry.In this study,cavities and extended defects formed in helium(He)ions implanted 6H-SiC at room...The formation of cavities in silicon carbide is vitally useful to“smart-cut”and metal gettering in semiconductor industry.In this study,cavities and extended defects formed in helium(He)ions implanted 6H-SiC at room temperature(RT)and 750℃ followed by annealing at 1500℃are investigated by a combination of transmission electron microscopy and high-resolution electron microscopy.The observed cavities and extended defects are related to the implantation temperature.Heterogeneously distributed cavities and extended defects are observed in the helium-implanted 6H-SiC at RT,while homogeneously distributed cavities and extended defects are formed after He-implanted 6H-SiC at 750℃.The possible reasons are discussed.展开更多
We investigate continuous variable entanglement produced in two distant coupled cavities, in which two four-level atoms are driven by classical fields respectively. Under the large detuning condition, an effective Ham...We investigate continuous variable entanglement produced in two distant coupled cavities, in which two four-level atoms are driven by classical fields respectively. Under the large detuning condition, an effective Hamiltonian containing the square of the creation (annihilation) operator of the cavity field is derived. Due to the nonlinearity, entanglement formally created by the beam splitter type interaction is transformed into the nondegenerate parametric down conversion type. Employing the operator algebraic method, we study the time evolution of the entanglement condition, and show that the system provides us an advantage in achieving a larger photon number with better entanglement. We also discuss the dissipation of the cavities affecting the entanglement.展开更多
A dynamically tunable multiband plasmon-induced transparency(PIT) effect in a series of rectangle cavities coupled with a graphene nanoribbon waveguide system is investigated theoretically and numerically by tuning th...A dynamically tunable multiband plasmon-induced transparency(PIT) effect in a series of rectangle cavities coupled with a graphene nanoribbon waveguide system is investigated theoretically and numerically by tuning the Fermi level of the graphene rectangle cavity. A single-PIT effect is realized using two different methods: one is the direct destructive interference between bright and dark modes, and the other is the indirect coupling through a graphene nanoribbon waveguide. Moreover, dual-PIT effect is obtained by three rectangle cavities side-coupled with a graphene nanoribbon waveguide.Results show that the magnitude of the dual-PIT window can be controlled between 0.21 and 0.74, and the corresponding group index is controlled between 143.2 and 108.6. Furthermore, the triple-PIT effect is achieved by the combination of bright–dark mode coupling and the cavities side-coupled with waveguide mechanism. Thus, sharp PIT windows can be formed, a high transmission is maintained between 0.51 and 0.74, and the corresponding group index is controlled between161.4 and 115.8. Compared with previously proposed graphene-based PIT effects, the size of the introduced structure is less than 0.5 μm2. Particularly, the slow light effect is crucial in the current research. Therefore, a novel approach is introduced toward the realization of optical sensors, optical filters, and slow light and light storage devices with ultra-compact,multiband, and dynamic tunable.展开更多
Forced and natural vibrations of a rectangular pre-stressed orthotropic compositeplate containing two neighboring cylindrical cavities whose cross sections are rectangularwith rounded-off corners are investigated nume...Forced and natural vibrations of a rectangular pre-stressed orthotropic compositeplate containing two neighboring cylindrical cavities whose cross sections are rectangularwith rounded-off corners are investigated numerically. It is assumed that all the end surfacesof the rectangular pre-stressed composite plate are simply supported and subjected to auniformly distributed normal time-harmonic force on the upper face plane. The consideredproblem is formulated within the Three-Dimensional Linearized Theory of Elastic Waves inInitially Stressed Bodies (TDLTEWISB). The influence of mechanical and geometricalparameters as well as the initial stresses and the effect of cylindrical cavities on the dynamicalcharacteristics of the rectangular orthotropic composite plate are analyzed and discussed.展开更多
The authors demonstrate a Bull's eye cavity design that is composed of circular Bragg gratings and micropillar optical cavity in 4H silicon carbide(4H-SiC) for single photon emission. Numerical calculations are us...The authors demonstrate a Bull's eye cavity design that is composed of circular Bragg gratings and micropillar optical cavity in 4H silicon carbide(4H-SiC) for single photon emission. Numerical calculations are used to investigate and optimize the emission rate and directionality of emission. Thanks to the optical mode resonances and Bragg reflections,the radiative decay rates of a dipole embedded in the cavity center is enhanced by 12.8 times as compared to that from a bulk 4H-SiC. In particular, a convergent angular distribution of the emission in far field is simultaneously achieved, which remarkably boost the collection efficiency. The findings of this work provide an alternative architecture to manipulate light-matter interactions for achieving high-efficient SiC single photon sources towards applications in quantum information technologies.展开更多
基金supported by Fund of Key Laboratory for Sustainable Utilization of Open-sea Fishery,Ministry of Agriculture and Rural Affairs,P.R.China(Grant No.LOF 2022-04).
文摘Wave-induced harbour resonance is numerically investigated inside a harbour with lateral cavities.The theoretical solutions for the amplification parameter are compared with the simulated results under varying dimensionless wave numbers in order to verify the simulation model in a rectangular harbour at a constant depth.The results indicate that the numerical model can correctly calculate the natural frequency and the natural wave height.A range of calculations are performed for harbour resonance with one pair of lateral cavities,two pairs of lateral cavities and three pairs of lateral cavities,respectively.The simulated results indicate that the amplitude of the amplification parameter decreases both at the primary natural oscillation and the secondary natural oscillation,as the number of lateral cavities increases.The dimensionless wave number reduces as the number of lateral cavities increases both at the primary natural oscillation and the secondary natural oscillation as well.
基金Projects(51004025,51174044)supported by the National Natural Science Foundation of ChinaProject(2011AA060400)supported by the National High-tech Research and Development Program of China+1 种基金Project(N120501003)supported by Ministry of Education of the People’s Republic of ChinaProject(LJQ2012024)supported by Department of Education of Liaoning Province,China
文摘The development of fracture around pre-existing cylindrical cavities in brittle rocks was examined using physical models and acoustic emission technique. The experimental results indicate that when granite blocks containing one pre-existing cylindrical cavity are loaded in uniaxial compression condition, the profiles of cracks around the cavity can be characterized by tensile cracking (splitting parallel to the axial compression direction) at the roof-floor, compressive crack at two side walls, and remote or secondary cracks at the perimeter of the cavity. Moreover, fracture around cavity is size-dependent. In granite blocks containing pre-existing half-length cylindrical cavities, compressive stress concentration is found to initiate at the two sidewalls and induce shear crack propagation and coalescence. In granite blocks containing multiple parallel cylindrical cavities, the adjacent cylindrical cavities can influence each other and the eventual failure mode is determined by the interaction of tensile, compressive and shear stresses. Experimental results show that both tensile and compressive stresses play an important role in fracture evolution process around cavities in brittle rocks.
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based on the equivalence principle.The CRCP slab is analyzed to determine the cavity position beneath the slab under vehicle loading. The influences of cavity size on the CRCP slab's stress and vertical displacement are investigated. The study results showthat the formation of the cavity is unavoidable under traffic loading, and the cavity is located at the edge of the longitudinal crack and the slab corner.The cavity size exerts an obvious influence on the largest horizontal tensile stress and vertical displacement. The slab corner is the critical load position of the CRCP slab. The results can be used to assist the design of CRCP in avoiding cavities beneath slabs subject to vehicle loading.
文摘In this paper,an analytic method is developed to address steady SH-wave scattering and perform dynamic analysis of multiple circular cavities in half space.The scattered wave function used for scattering of SH-waves by multiple circular cavities,which automatically satisfies the stress-free condition at the horizontal surface,is constructed by applying the symmetry of the SH-wave scattering and the method of multi-polar coordinates system.Applying this scattered wave function and method of moving coordinates,the original problem can be transformed to the problem of SH-wave scattering by multiple circular cavities in the full space.Finally,the solution of the problem can be reduced to a series of algebraic equations and solved numerically by truncating the infinite algebraic equations to the finite ones.Numerical examples are provided for case with two cavities to show the effect of wave number,and the distances between the centers of the cavities and from the centers to the ground surface on the dynamic stress concentration around the cavity impacted by incident steady SH-wave.
基金Project supported by the Science and Technology Plan of Hunan Province,China (Grant No. 2010FJ3081)the Natural Science Foundation of Hunan Province of China (Grant No. 11JJ3003)
文摘The dynamic behaviour of the two-site coupled cavities model which is doped with ta wo-level system is investi-gated. The exact dynamic solutions in the general condition are obtained via Laplace transform. The simple analytical solutions are obtained in several particular cases, which demonstrate the clear and simple physical picture for the quan-tum state transition of the system. In the large detuning or hoppling case, the quantum states transferring between qubits follow a slow periodic oscillation induced by the very weak excitation of the cavity mode. In the large coupling case, the system can be interpreted as two Jaynes-Cummings model subsystems which interact through photon hop between the two cavities. In the case of λ≈△〉〉 g, the quantum states transition of qubits is accompanied by the excitation of the cavity, and the cavity modes have the same dynamic behaviours and the amplitude of probability is equM to 0.25 which does not change with the variation of parameter.
文摘Aprogram applying an algorithm of finite-difference time-domain method is established that can be used to calculate the resonant frequencies of cavities of arbitrary modes, coupled with the discrete Fourier transform. Several coaxial resonators including the empty coaxial cavity, re-enrant coaxial cavity and partially stepped resonator are studied with this method, especially the spurious mode resonant frequencies of coaxial cavi- ties. The numerical results thus obtained are shown to be in excellent agreement with those obtainable through rigorous theoretical solutions and experiment results.
文摘The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure.Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle.At the microstructural level,osteoclasts create bone deficits by eroding resorption cavities.Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging,but maybe even more so in quantifying their role in metabolic bone diseases.Meta-bolic bone diseases and their treatment are both known to affect the bone remodelling cycle;hence,the bone mechanical competence can and will be affected.How-ever,the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited.This is not surprising considering the difficulties in deriving three-dimensional(3D)properties from two-dimensional(2D)histological sections.The measurement difficulties are reflected in the evalua-tion of how resorption cavities affect bone competence.Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities,the representation of the cavities themselves has basicallybeen limited to simplified shapes and averaged cavityproperties.Qualitatively,these models indicate that cav-ity size and location are important,and that the effectof cavities is larger than can be expected from simplebone loss.In summary,the dimensions of osteoclastresorption cavities were until recently estimated from2D measures;hence,a careful interpretation of resorp-tion cavity dimensions is necessary.More effort needsto go into correctly quantifying resorption cavities usingmodern 3D imaging techniques like micro-computedtomography(micro-CT)and synchrotron radiation CT.Osteoclast resorption cavities affect bone competence.The structure-function relationships have been ana-lysed using computational models that,on one hand,provide rather detailed information on trabecular bonestructure,but on the other incorporate rather crudeassumptions on cavity dimensions.The use of high-resolution representations and parametric descriptionscould be potential routes to improve the quantitativefidelity of these models.
基金Supported by National Natural Science Foundation of China (50378063), Excellent Young Teachers Program of MOE and SRF for ROCS, MOE.
文摘A series solution for surface motion amplification due to underground group cavities for incident plane P waves is derived by Fourier-Bessel series expansion method. It is shown that underground group cavities significantly am-plify the surface ground motion nearby. It is suggested that the effect of subways on ground motion should be con-sidered when the subways are planned and designed.
基金supported by National Natural Science Foundation of China(Grant 11372139)
文摘The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun(BLPG).Experiments on the interaction of twin combustion gas jets and liquid medium in a cylindrical stepped-wall combustion chamber are conducted in detail to obtain time series processes of jet expansion,and a numerical simulation under the same working conditions is also conducted to verify the reliability of the numerical method by comparing numerical results and experimental results.From this,numerical simulations on mutual interference and expansion characteristics of multiple combustion gas jets(four,six,and eight jets) in liquid medium are carried out,and the distribution characteristic of pressure,velocity,temperature,and evolutionary processes of Taylor cavities and streamlines of jet flow Held are obtained in detail.The results of numerical simulations show that when different numbers of combustion gas jets expand in liquid medium,there are two different types of vortices in the jet flow field,including corner vortices of liquid phase near the step and backflow vortices of gas phase within Taylor cavities.Because of these two types of vortices,the radial expansion characteristic of the jets is increased,while changing numbers of combustion gas jets can restrain Kelvin-Helmholtz instability to a certain degree in jet expansion processes,which can at last realize the goal of controlling the interior ballistic stability of a BLPG.The optimum method for both suppressing Kelvin-Helmholtz instability and promoting radial expansion of Taylor cavities can be determined by analyzing the change of characteristic parameters in a jet flow field.
文摘The time-history responses of the surface were obtained for a linear elastic half-plane including regularly distributed enormous embedded circular cavities subjected to propagating obliquely incident plane SH-waves. An advanced numerical approach named half-plane time-domain boundary element method(BEM), which only located the meshes around the cavities, was used to create the model. By establishing the modified boundary integral equation(BIE)independently for each cavity and forming the matrices, the final coupled equation was solved step-by-step in the timedomain to obtain the boundary values. The responses were developed for a half-plane with 512 cavities. The amplification patterns were also obtained to illustrate the frequencydomain responses for some cases. According to the results,the presence of enormous cavities affects the scattering and diffraction of the waves arrived to the surface. The introduced method can be recommended for geotechnical/mechanical engineers to model structures in the fields of earthquake engineering and composite materials.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10175029, 10375039, and 10647007, the Doctoral Education Fund of Ministry of Education, the Research Fund of Nuclear Theory Center of HIRFL of China, and the Science and Technology Foundation of Sichuan Province under Grant No. 02GY029-189
文摘When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the enviroment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.
基金Supported by the National Key Program for S&T Research and Development under Grant No 2016YFA0400400the National Natural Science Foundation of China under Grant No 11575012
文摘A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as a aseful way to improve Q0 of the superconducting cavity in recent years. N-doping researches with 1.3 GHz single cell cavities are carried out at Peking University and the preliminary results are promising. Our recipe is slightly different from other laboratories. After 250μm polishing, high pressure rinsing and 3 h high temperature annealing, the cavities are nitrogen doped at 2.7-4.0Pa for 20rain and then followed by 15μm electropolishing. Vertical test results show that Q0 of a 1.3 GHz single cell cavity made of large grain niobium has increased to 4 ×10 10 at 2.0K and medium gradient.
基金Project supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91121023)the National Natural Science Foundation of China(Grant Nos.60978009 and 61378012)+1 种基金the Science and Technology Project of Zhanjiang,China(Grant No.2011C3103007)the Science Research Project in Guangdong Medical College,China(Grant No.xk1120)
文摘In this paper, the entanglement dynamics of two two-level atoms trapped in coupled cavities with a Kerr medium is investigated, We find that the phenomena of entanglement sudden death (ESD) and entanglement sudden birth (ESB) appear during the evolution process. The influences of initial atomic states, Kerr medium, and cavity-cavity hopping rate on the atom-atom entanglement are discussed. The results obtained by the numerical method show that the atom- atom entanglement is strengthened and even prevented from ESD with increasing cavity-cavity hopping rate and Kerr nonlinearity.
基金Supported by the National Basic Research Program of China under Grant No 2013CB932602the National Natural Science Foundation of China under Grant Nos 11574011,61377050 and 11234001
文摘We demonstrate the hybridization of the plasmonic modes in directly coupled whispering gallery cavities fabricated on silver films and present the mode patterns and energy levels using cathodoluminescence spectroscopy. Although the energy of the most antisymmetrically coupled modes is higher than that of the corresponding symmetrically coupled ones, the contrary cases happen for small quantum number modes. We attribute the phenomenon to the different surface plasmon polariton paths between the symmetrically and antisymmetrically coupled modes; These results provide an understanding of the resonant properties in coupled plasmonic cavities, which have potential applications in nanophotonic devices.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174254 and 11474256
文摘Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entanglement dynamics initiated from the well-known Bell states is derived, which is very close to the numerical exact results up to the ultrastrong coupling regime. It is found that the vanishing entanglement can be purely induced by the counter-rotating terms, and can be enhanced with the atom-cavity coupling.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1832133)the Doctor Research Foundation of Southwest University of Science and Technology,China(Grant No.18zx7141).
文摘The formation of cavities in silicon carbide is vitally useful to“smart-cut”and metal gettering in semiconductor industry.In this study,cavities and extended defects formed in helium(He)ions implanted 6H-SiC at room temperature(RT)and 750℃ followed by annealing at 1500℃are investigated by a combination of transmission electron microscopy and high-resolution electron microscopy.The observed cavities and extended defects are related to the implantation temperature.Heterogeneously distributed cavities and extended defects are observed in the helium-implanted 6H-SiC at RT,while homogeneously distributed cavities and extended defects are formed after He-implanted 6H-SiC at 750℃.The possible reasons are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11074028)
文摘We investigate continuous variable entanglement produced in two distant coupled cavities, in which two four-level atoms are driven by classical fields respectively. Under the large detuning condition, an effective Hamiltonian containing the square of the creation (annihilation) operator of the cavity field is derived. Due to the nonlinearity, entanglement formally created by the beam splitter type interaction is transformed into the nondegenerate parametric down conversion type. Employing the operator algebraic method, we study the time evolution of the entanglement condition, and show that the system provides us an advantage in achieving a larger photon number with better entanglement. We also discuss the dissipation of the cavities affecting the entanglement.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11647122 and 61705064)the Natural Science Foundation of Hubei Province,China(Grant Nos.2018CFB672 and 2021CFB607)+1 种基金the Project of the Hubei Provincial Department of Education,China(Grant Nos.B2021215 and T201617)the Natural Science Foundation of Xiaogan City,China(Grant Nos.XGKJ2021010002 and XGKJ2021010003)。
文摘A dynamically tunable multiband plasmon-induced transparency(PIT) effect in a series of rectangle cavities coupled with a graphene nanoribbon waveguide system is investigated theoretically and numerically by tuning the Fermi level of the graphene rectangle cavity. A single-PIT effect is realized using two different methods: one is the direct destructive interference between bright and dark modes, and the other is the indirect coupling through a graphene nanoribbon waveguide. Moreover, dual-PIT effect is obtained by three rectangle cavities side-coupled with a graphene nanoribbon waveguide.Results show that the magnitude of the dual-PIT window can be controlled between 0.21 and 0.74, and the corresponding group index is controlled between 143.2 and 108.6. Furthermore, the triple-PIT effect is achieved by the combination of bright–dark mode coupling and the cavities side-coupled with waveguide mechanism. Thus, sharp PIT windows can be formed, a high transmission is maintained between 0.51 and 0.74, and the corresponding group index is controlled between161.4 and 115.8. Compared with previously proposed graphene-based PIT effects, the size of the introduced structure is less than 0.5 μm2. Particularly, the slow light effect is crucial in the current research. Therefore, a novel approach is introduced toward the realization of optical sensors, optical filters, and slow light and light storage devices with ultra-compact,multiband, and dynamic tunable.
文摘Forced and natural vibrations of a rectangular pre-stressed orthotropic compositeplate containing two neighboring cylindrical cavities whose cross sections are rectangularwith rounded-off corners are investigated numerically. It is assumed that all the end surfacesof the rectangular pre-stressed composite plate are simply supported and subjected to auniformly distributed normal time-harmonic force on the upper face plane. The consideredproblem is formulated within the Three-Dimensional Linearized Theory of Elastic Waves inInitially Stressed Bodies (TDLTEWISB). The influence of mechanical and geometricalparameters as well as the initial stresses and the effect of cylindrical cavities on the dynamicalcharacteristics of the rectangular orthotropic composite plate are analyzed and discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 91850112, 61774081, 62004099, and 61921005)in part by Shenzhen Fundamental Research Program (Grant Nos. JCYJ20180307163240991 and JCYJ20180307154632609)+3 种基金in part by the State Key Research and Development Project of Jiangsu Province, China (Grant No. BE2018115)in part by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20201253)in part by the State Key Research and Development Project of Guangdong Province, China (Grant No. 2020B010174002)in part by Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB43020500)。
文摘The authors demonstrate a Bull's eye cavity design that is composed of circular Bragg gratings and micropillar optical cavity in 4H silicon carbide(4H-SiC) for single photon emission. Numerical calculations are used to investigate and optimize the emission rate and directionality of emission. Thanks to the optical mode resonances and Bragg reflections,the radiative decay rates of a dipole embedded in the cavity center is enhanced by 12.8 times as compared to that from a bulk 4H-SiC. In particular, a convergent angular distribution of the emission in far field is simultaneously achieved, which remarkably boost the collection efficiency. The findings of this work provide an alternative architecture to manipulate light-matter interactions for achieving high-efficient SiC single photon sources towards applications in quantum information technologies.