Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
This research is intended to provide academic reference and design guidance for further studies to determine the most effective means to reduce a ship’s resistance through an air-cavity. On the basis of potential the...This research is intended to provide academic reference and design guidance for further studies to determine the most effective means to reduce a ship’s resistance through an air-cavity. On the basis of potential theory and on the assumption of an ideal and irrotational fluid, this paper drives a method for calculating air cavity formation using slender ship theory then points out the parameters directly related to the formation of air cavities and their interrelationships. Simulations showed that the formation of an air cavity is affected by cavitation number, velocity, groove geometry and groove size. When the ship’s velocity and groove structure are given, the cavitation number must be within range to form a steady air cavity. The interface between air and water forms a wave shape and could be adjusted by an air injection system.展开更多
The analytical expression for the transmission spectra of coupled cavity waveguides (CCWs) in photonic crystals (PCs) is derived based on the coupled-mode theory (CMT). Parameters in the analytical expression ca...The analytical expression for the transmission spectra of coupled cavity waveguides (CCWs) in photonic crystals (PCs) is derived based on the coupled-mode theory (CMT). Parameters in the analytical expression can be extracted by simple numerical simulations. We reveal that it is the phase shift between the two adjacent PC defects that uniquely determines the flatness of the impurity bands of CCWs. In addition, it is found that the phase shift also greatly affects the bandwidth of CCWs. Thus, the engineering of the impurity bands of CCWs can be realized through the adjustment of the phase shift. Based on the theoretical results, an interesting phenomenon in which a CCW acts as a single PC defect and its impurity band possesses a Lorentz lineshape is predicted. Very good agreement between the analytical results and the numerical simulations based on transfer matrix method has been achieved.展开更多
An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account...An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.展开更多
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
基金the Sustention of the Ministry of Education for Excellent Homecoming Researchers.
文摘This research is intended to provide academic reference and design guidance for further studies to determine the most effective means to reduce a ship’s resistance through an air-cavity. On the basis of potential theory and on the assumption of an ideal and irrotational fluid, this paper drives a method for calculating air cavity formation using slender ship theory then points out the parameters directly related to the formation of air cavities and their interrelationships. Simulations showed that the formation of an air cavity is affected by cavitation number, velocity, groove geometry and groove size. When the ship’s velocity and groove structure are given, the cavitation number must be within range to form a steady air cavity. The interface between air and water forms a wave shape and could be adjusted by an air injection system.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374065), the Natural Science Foundation of Guangdong Province of China (Grant No 32050), the Ministry of Education of China (Grant No 204107), and the Department of Education of Guangdong Province of China (Grant No Z03033).
文摘The analytical expression for the transmission spectra of coupled cavity waveguides (CCWs) in photonic crystals (PCs) is derived based on the coupled-mode theory (CMT). Parameters in the analytical expression can be extracted by simple numerical simulations. We reveal that it is the phase shift between the two adjacent PC defects that uniquely determines the flatness of the impurity bands of CCWs. In addition, it is found that the phase shift also greatly affects the bandwidth of CCWs. Thus, the engineering of the impurity bands of CCWs can be realized through the adjustment of the phase shift. Based on the theoretical results, an interesting phenomenon in which a CCW acts as a single PC defect and its impurity band possesses a Lorentz lineshape is predicted. Very good agreement between the analytical results and the numerical simulations based on transfer matrix method has been achieved.
基金Project supported by the National Postdoctoral Science Foundation of China (No.20060400317)the Education Foundation of Zhejiang Province (No.20061459)the Young Foundation of Zhejiang Province (No.0202303005),China
文摘An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.