A simulation code that executes the tracking of longitudinal oscillations of the bunches for the double rf system of the Hefei Light Source Ⅱ Project (HLS-Ⅱ) is presented to estimate the mean beam lifetime and the...A simulation code that executes the tracking of longitudinal oscillations of the bunches for the double rf system of the Hefei Light Source Ⅱ Project (HLS-Ⅱ) is presented to estimate the mean beam lifetime and the Robinson instabilities. The tracking results show that the mean beam lifetime is in agreement with the analytical results and the system is stable when we tune the harmonic cavity in the optimum lengthening conditions. Moreover, the simulated results of the asymmetric fill pattern show that some bunches are compressed only with a 7% gap (3 gaps), which will lead to the reduction in the mean bunch lengthening and potential beam lifetime. It is demonstrated that HLS-Ⅱ with a passive higher harmonic cavity is not suitable for operating in an asymmetric fill pattern.展开更多
In the Phase Ⅱ Project at the Hefei Light Source, a fourth-harmonic "Landau" cavity will be operated in order to suppress the coupled-bunch instabilities and increase the beam lifetime of the Hefei storage ring. In...In the Phase Ⅱ Project at the Hefei Light Source, a fourth-harmonic "Landau" cavity will be operated in order to suppress the coupled-bunch instabilities and increase the beam lifetime of the Hefei storage ring. Instabilities limit the utility of the higher-harmonic cavity when the storage ring is operated with a small momentum compaction. Analytical modeling and simulations show that the instabilities result from Robinson mode coupling. In the analytic modeling, we operate an algorithm to consider the Robinson instabilities. To study the evolution of unstable behavior, simulations have been performed in which macroparticles are distributed among the buckets. Both the analytic modeling and simulations agree for passive operation of the harmonic cavity.展开更多
基金Supported by National Natural Science Foundation of China(10675116)Major State Basic Research Development Programme of China(2011CB808301)
文摘A simulation code that executes the tracking of longitudinal oscillations of the bunches for the double rf system of the Hefei Light Source Ⅱ Project (HLS-Ⅱ) is presented to estimate the mean beam lifetime and the Robinson instabilities. The tracking results show that the mean beam lifetime is in agreement with the analytical results and the system is stable when we tune the harmonic cavity in the optimum lengthening conditions. Moreover, the simulated results of the asymmetric fill pattern show that some bunches are compressed only with a 7% gap (3 gaps), which will lead to the reduction in the mean bunch lengthening and potential beam lifetime. It is demonstrated that HLS-Ⅱ with a passive higher harmonic cavity is not suitable for operating in an asymmetric fill pattern.
基金Supported by National Natural Science Foundation of China(10979045,11175180,11175182)
文摘In the Phase Ⅱ Project at the Hefei Light Source, a fourth-harmonic "Landau" cavity will be operated in order to suppress the coupled-bunch instabilities and increase the beam lifetime of the Hefei storage ring. Instabilities limit the utility of the higher-harmonic cavity when the storage ring is operated with a small momentum compaction. Analytical modeling and simulations show that the instabilities result from Robinson mode coupling. In the analytic modeling, we operate an algorithm to consider the Robinson instabilities. To study the evolution of unstable behavior, simulations have been performed in which macroparticles are distributed among the buckets. Both the analytic modeling and simulations agree for passive operation of the harmonic cavity.