MgCdc42 (Cdc42 in Magnaporthe grisea), with high homology to ScCdc42 (Cdc42 in Saccharomyces cerevisiae), has been demonstrated to involve in the morphogenesis and infection process. To further understand the sign...MgCdc42 (Cdc42 in Magnaporthe grisea), with high homology to ScCdc42 (Cdc42 in Saccharomyces cerevisiae), has been demonstrated to involve in the morphogenesis and infection process. To further understand the signaling network, the putative MgCdc42-interacting proteins were analyzed. ScCdc42-interacting protein sequences were first used to BLAST against the M. grisea genome database to retrieve their corresponding analogs. Subsequently, conserved domains of these proteins were compared and expression patterns of their encoding genes in different MgCdc42 mutation states were analyzed by semiquantitative RT-PCR. All retrieved analogs of ScCdc42-interacting proteins from the M. grisea database have conserved domains as those in S. cerevisiae. Expression of their encoding genes increased in MgCdc42CA mutant and decreased in MgCdc42KO mutant. However, MgBeml, Chin1, and MgGicl in MgCdc42DN mutant had the same expression level as that in the wild type, although MgBem4, MgBoi2, MgCdc24, MgGic2, MgRgal, and Mst20 had decreased expression level, as expected. Overall, it is concluded that there may exist a similar Cdc42 signal pathway in M. grisea as in S. cerevisiae and MgCdc42 plays a key role in the pathway.展开更多
Objective: The high expression of cell division cycle 42 protein (CDC42) may be involved in the occurrence and progression of several tumors. However, the expression and function of CDC42 in cervical squamous cell ...Objective: The high expression of cell division cycle 42 protein (CDC42) may be involved in the occurrence and progression of several tumors. However, the expression and function of CDC42 in cervical squamous cell carcinoma remains unclear. This study aimed to investigate the expression of CDC42 in cervical squamous cell carcinoma and its correlation with clinicopathologic characteristics. Methods: The expression of CDC42 in 162 cervical squamous cell carcinoma tissue samples and 33 normal cervical tissue samples was investigated by immunohistochemistry. The CDC42 mRNA expression was detected by reverse transcription-polymerase chain reaction (RT-PCR). Results: The cervical squamous cell carcinoma group showed a significantly higher CDC42 positive rate, compared to the normal cervical tissues (P〈0.05). Fttrthermore, the tissues of stage Ⅱ-Ⅳ carcinoma patients showed higher CDC42 expression levels compared to stage I patients (P=0.05). In addition, the expression of CDC42 was not correlated to age of patients, differentiation degree of cancer cells, or lymph node metastasis (P〉0.05). Furthermore, compare with normal cervical tissues, the CDC42 mRNA expression in cervical cancer had no significant difference. Conclusions: CDC42 was up-regulated at protein level, but not mRNA level, in cervical squamous cell carcinoma. The high expression of CDC42 was correlated to the clinical stage of the patients, indicating that CDC42 might contribute to the progression of cervical squamous cell carcinoma.展开更多
AIM:To understand the interaction of human IQGAP1 and CDC42,especially the effects of phosphorylation and a cancer-associated mutation. METHODS:Recombinant CDC42 and a novel C-termi- nal fragment of IQGAP1 were expres...AIM:To understand the interaction of human IQGAP1 and CDC42,especially the effects of phosphorylation and a cancer-associated mutation. METHODS:Recombinant CDC42 and a novel C-termi- nal fragment of IQGAP1 were expressed in,and puri- fied from,Escherichia coli.Site directed mutagenesis was used to create coding sequences for three phos- phomimicking variants(S1441E,S1443D and S1441E/ S1443D)and to recapitulate a cancer-associated mu- tation(M1231I).These variant proteins were also ex- pressed and purified.Protein-protein crosslinking using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide was used to investigate interactions between the C-terminal fragment and CDC42.These interactions were quanti- fied using surface plasmon resonance measurements.Molecular modelling was employed to make predictions about changes to the structure and flexibility of the protein which occur in the cancer-associated variant. RESULTS:The novel,C-terminal region of human IQGAP1 (residues 877-1558)is soluble following expression and purification.It is also capable of binding to CDC42,as judged by crosslinking experiments.Interaction appears to be strongest in the presence of added GTP.The three phosphomimicking mutants had different affini- ties for CDC42.S1441E had an approximately 200-fold reduction in affinity compared to wild type.This was caused largely by a dramatic reduction in the associa- tion rate constant.In contrast,both S1443D and the double variant S1441E/S1443D had similar affinities to the wild type.The cancer-associated variant,M1231I, also had a similar affinity to wild type.However,in the case of this variant,both the association and dis- sociation rate constants were reduced approximately 10-fold.Molecular modelling of the M1231I variant, based on the published crystal structure of part of the C-terminal region,revealed no gross structural changes compared to wild type(root mean square deviation of 0.564over 5556 equivalent atoms).However,pre- dictions of the flexibility of the polypeptide backbone suggested that some regions of the variant protein had greatly increased rigidity compared to wild type.One such region is a loop linking the proposed CDC42 bind- ing site with the helix containing the altered residue.It is suggested that this increase in rigidity is responsible for the observed changes in association and dissocia- tion rate constants. CONCLUSION:The consequences of introducing nega- tive charge at Ser-1441 or Ser-1443 in IQGAP1 are dif- ferent.The cancer-associated variant M1231I exerts its effects partly by rigidifying the protein.展开更多
The member of Rho family of small GTPases Cdc42 plays important and conserved roles in cell polarity and motility. The Cdc42ep family proteins have been identified to bind to Cdc42, yet how they interact with Cdc42 to...The member of Rho family of small GTPases Cdc42 plays important and conserved roles in cell polarity and motility. The Cdc42ep family proteins have been identified to bind to Cdc42, yet how they interact with Cdc42 to regulate cell migration remains to be elucidated. In this study, we focus on Cdc42epl, which is expressed predominantly in the highly migratory neural crest ceils in frog embryos. Through morpholino-mediated knockdown, we show that Cdc42epl is required for the migration of cranial neural crest cells. Loss of Cdc42epl leads to rounder cell shapes and the formation of membrane blebs, consistent with the observed disruption in actin organization and focal adhesion alignment. As a result, Cdc42ep1 is critical for neural crest cells to apply traction forces at the correct place to migrate efficiently. We further show that Cdc42ep1 is localized to two areas in neural crest celts: in membrane protrusions together with Cdc42 and in perinuciear patches where Cdc42 is absent. Cdc42 directly interacts with Cdc42epl (through the CRIB domain) and changes in Cdc42 level shift the distribution of Cdc42epl between these two subcellular locations, controlling the formation of membrane protrusions and directionality of migration as a consequence. These results suggest that Cdc42ep1 elaborates Cdc42 activity in neural crest cells to promote their efficient migration.展开更多
基金the National Natural Science Foundation of China to Wang Zonghua (30070030, 30470066).
文摘MgCdc42 (Cdc42 in Magnaporthe grisea), with high homology to ScCdc42 (Cdc42 in Saccharomyces cerevisiae), has been demonstrated to involve in the morphogenesis and infection process. To further understand the signaling network, the putative MgCdc42-interacting proteins were analyzed. ScCdc42-interacting protein sequences were first used to BLAST against the M. grisea genome database to retrieve their corresponding analogs. Subsequently, conserved domains of these proteins were compared and expression patterns of their encoding genes in different MgCdc42 mutation states were analyzed by semiquantitative RT-PCR. All retrieved analogs of ScCdc42-interacting proteins from the M. grisea database have conserved domains as those in S. cerevisiae. Expression of their encoding genes increased in MgCdc42CA mutant and decreased in MgCdc42KO mutant. However, MgBeml, Chin1, and MgGicl in MgCdc42DN mutant had the same expression level as that in the wild type, although MgBem4, MgBoi2, MgCdc24, MgGic2, MgRgal, and Mst20 had decreased expression level, as expected. Overall, it is concluded that there may exist a similar Cdc42 signal pathway in M. grisea as in S. cerevisiae and MgCdc42 plays a key role in the pathway.
基金supported by the National Natural Science Foundation of China(No.11072006,No.10772007 and No.81070078)National Basic Research Program of China(973 Program,2013CB933702)
文摘Objective: The high expression of cell division cycle 42 protein (CDC42) may be involved in the occurrence and progression of several tumors. However, the expression and function of CDC42 in cervical squamous cell carcinoma remains unclear. This study aimed to investigate the expression of CDC42 in cervical squamous cell carcinoma and its correlation with clinicopathologic characteristics. Methods: The expression of CDC42 in 162 cervical squamous cell carcinoma tissue samples and 33 normal cervical tissue samples was investigated by immunohistochemistry. The CDC42 mRNA expression was detected by reverse transcription-polymerase chain reaction (RT-PCR). Results: The cervical squamous cell carcinoma group showed a significantly higher CDC42 positive rate, compared to the normal cervical tissues (P〈0.05). Fttrthermore, the tissues of stage Ⅱ-Ⅳ carcinoma patients showed higher CDC42 expression levels compared to stage I patients (P=0.05). In addition, the expression of CDC42 was not correlated to age of patients, differentiation degree of cancer cells, or lymph node metastasis (P〉0.05). Furthermore, compare with normal cervical tissues, the CDC42 mRNA expression in cervical cancer had no significant difference. Conclusions: CDC42 was up-regulated at protein level, but not mRNA level, in cervical squamous cell carcinoma. The high expression of CDC42 was correlated to the clinical stage of the patients, indicating that CDC42 might contribute to the progression of cervical squamous cell carcinoma.
基金Supported by The Biotechnology and Biological Sciences Research Council(BBSRC),United Kingdom,No.BB/D000394/1Action Cancer,Northern Ireland,United Kingdom,No.PG2 2005
文摘AIM:To understand the interaction of human IQGAP1 and CDC42,especially the effects of phosphorylation and a cancer-associated mutation. METHODS:Recombinant CDC42 and a novel C-termi- nal fragment of IQGAP1 were expressed in,and puri- fied from,Escherichia coli.Site directed mutagenesis was used to create coding sequences for three phos- phomimicking variants(S1441E,S1443D and S1441E/ S1443D)and to recapitulate a cancer-associated mu- tation(M1231I).These variant proteins were also ex- pressed and purified.Protein-protein crosslinking using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide was used to investigate interactions between the C-terminal fragment and CDC42.These interactions were quanti- fied using surface plasmon resonance measurements.Molecular modelling was employed to make predictions about changes to the structure and flexibility of the protein which occur in the cancer-associated variant. RESULTS:The novel,C-terminal region of human IQGAP1 (residues 877-1558)is soluble following expression and purification.It is also capable of binding to CDC42,as judged by crosslinking experiments.Interaction appears to be strongest in the presence of added GTP.The three phosphomimicking mutants had different affini- ties for CDC42.S1441E had an approximately 200-fold reduction in affinity compared to wild type.This was caused largely by a dramatic reduction in the associa- tion rate constant.In contrast,both S1443D and the double variant S1441E/S1443D had similar affinities to the wild type.The cancer-associated variant,M1231I, also had a similar affinity to wild type.However,in the case of this variant,both the association and dis- sociation rate constants were reduced approximately 10-fold.Molecular modelling of the M1231I variant, based on the published crystal structure of part of the C-terminal region,revealed no gross structural changes compared to wild type(root mean square deviation of 0.564over 5556 equivalent atoms).However,pre- dictions of the flexibility of the polypeptide backbone suggested that some regions of the variant protein had greatly increased rigidity compared to wild type.One such region is a loop linking the proposed CDC42 bind- ing site with the helix containing the altered residue.It is suggested that this increase in rigidity is responsible for the observed changes in association and dissocia- tion rate constants. CONCLUSION:The consequences of introducing nega- tive charge at Ser-1441 or Ser-1443 in IQGAP1 are dif- ferent.The cancer-associated variant M1231I exerts its effects partly by rigidifying the protein.
基金This work is supported by the National Institutes of Health (ROODE022796 to S.N.) and National Science Foundation (DMR- 0955811 to J.E.C. and PHY-0848797 to J.E.C. and D.T.K.).
文摘The member of Rho family of small GTPases Cdc42 plays important and conserved roles in cell polarity and motility. The Cdc42ep family proteins have been identified to bind to Cdc42, yet how they interact with Cdc42 to regulate cell migration remains to be elucidated. In this study, we focus on Cdc42epl, which is expressed predominantly in the highly migratory neural crest ceils in frog embryos. Through morpholino-mediated knockdown, we show that Cdc42epl is required for the migration of cranial neural crest cells. Loss of Cdc42epl leads to rounder cell shapes and the formation of membrane blebs, consistent with the observed disruption in actin organization and focal adhesion alignment. As a result, Cdc42ep1 is critical for neural crest cells to apply traction forces at the correct place to migrate efficiently. We further show that Cdc42ep1 is localized to two areas in neural crest celts: in membrane protrusions together with Cdc42 and in perinuciear patches where Cdc42 is absent. Cdc42 directly interacts with Cdc42epl (through the CRIB domain) and changes in Cdc42 level shift the distribution of Cdc42epl between these two subcellular locations, controlling the formation of membrane protrusions and directionality of migration as a consequence. These results suggest that Cdc42ep1 elaborates Cdc42 activity in neural crest cells to promote their efficient migration.