N^(6)-methyladenosine(m^(6)A)RNA is the most abundant modification of mRNA,and has been demonstrated in regulating various post-transcriptional processes.Many studies have shown that m^(6)A methylation plays key roles...N^(6)-methyladenosine(m^(6)A)RNA is the most abundant modification of mRNA,and has been demonstrated in regulating various post-transcriptional processes.Many studies have shown that m^(6)A methylation plays key roles in sex determination,neuronal functions,and embryonic development in Drosophila and mammals.Here,we analyzed transcriptome-wide profile of m^(6)A modification in the embryonic development of the destructive agricultural pest Spodoptera frugiperda.We found that the 2 key mRNA m^(6)A methyltransferases SfrMETTL3 and SfrMETTL14 have high homologies with other insects and mammals,suggesting that SfrMETTL3 and SfrMETTL14 may have conserved function among different species.From methylated RNA immunoprecipitation sequencing analysis,we obtained 46869 m^(6)A peaks representing 8587 transcripts in the 2-h embryos after oviposition,and 41389 m^(6)A peaks representing 9230 transcripts in the 24-h embryos.In addition,5995 m^(6)A peaks were differentially expressed including 3752 upregulated and 2243 downregulated peaks.Functional analysis with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes suggested that differentially expressed m^(6)A peak-modified genes were enriched in cell and organ development between the 2-and 24-h embryos.By conjoint analysis of methylated RNA immunoprecipitation-seq and RNA-seq data,we found that RNA m^(6)A methylation may regulate the transcriptional levels of genes related to tissue and organ development from 2-to 24-h embryos.Our study reveals the role of RNA m^(6)A epigenetic regulation in the embryonic development of S.frugiperda,and provides new insights for the embryonic development of insects.展开更多
基金supported by China Postdoctoral Science Foundation(2021M691094)the National Natural Science Foundation of China(32070615,81902093)+3 种基金Guangdong Provincial Natural Science Foundation(2021A1515010823 and 2022A1515010569)Guangzhou Science and Technology Project(202002030100)Guangdong Provincial Science and Technology Agricultural Program(KTP20200105)Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme to XYW.We thank the National Center for Protein Sciences at Peking University and Hui Li for assistance with the LC-MS/MS quantification of m^(6)A levels.
文摘N^(6)-methyladenosine(m^(6)A)RNA is the most abundant modification of mRNA,and has been demonstrated in regulating various post-transcriptional processes.Many studies have shown that m^(6)A methylation plays key roles in sex determination,neuronal functions,and embryonic development in Drosophila and mammals.Here,we analyzed transcriptome-wide profile of m^(6)A modification in the embryonic development of the destructive agricultural pest Spodoptera frugiperda.We found that the 2 key mRNA m^(6)A methyltransferases SfrMETTL3 and SfrMETTL14 have high homologies with other insects and mammals,suggesting that SfrMETTL3 and SfrMETTL14 may have conserved function among different species.From methylated RNA immunoprecipitation sequencing analysis,we obtained 46869 m^(6)A peaks representing 8587 transcripts in the 2-h embryos after oviposition,and 41389 m^(6)A peaks representing 9230 transcripts in the 24-h embryos.In addition,5995 m^(6)A peaks were differentially expressed including 3752 upregulated and 2243 downregulated peaks.Functional analysis with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes suggested that differentially expressed m^(6)A peak-modified genes were enriched in cell and organ development between the 2-and 24-h embryos.By conjoint analysis of methylated RNA immunoprecipitation-seq and RNA-seq data,we found that RNA m^(6)A methylation may regulate the transcriptional levels of genes related to tissue and organ development from 2-to 24-h embryos.Our study reveals the role of RNA m^(6)A epigenetic regulation in the embryonic development of S.frugiperda,and provides new insights for the embryonic development of insects.