为了给深入研究猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndromevirus,PRRSV)ORF6基因编码的M蛋白的生物学功能提供重要试验材料,本研究首先利用慢病毒包装系统构建了过表达PRRSVORF6基因的重组慢病毒质粒,将该...为了给深入研究猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndromevirus,PRRSV)ORF6基因编码的M蛋白的生物学功能提供重要试验材料,本研究首先利用慢病毒包装系统构建了过表达PRRSVORF6基因的重组慢病毒质粒,将该质粒连同辅助质粒共同转染至HEK293T细胞获得重组慢病毒;之后将重组慢病毒感染MARC-145细胞,利用嘌呤霉素结合有限稀释法进行筛选,连续筛选3轮后建立了稳定表达PRRSVM蛋白的MARC-145ORF6细胞系;并使用CCK-8试验评估过表达PRRSVM蛋白对MARC-145细胞生长的影响。利用RT-PCR、蛋白免疫印迹(Westernblot)和间接免疫荧光(IFA)评估MARC-145ORF6细胞系的传代稳定性并鉴定M蛋白的亚细胞定位,进一步利用RT-qPCR评估过表达M蛋白对MARC-145细胞的干扰素及相关调节基因的影响;此外,还测定了PRRSV在MARC-145ORF6细胞系、MARC-145Flag细胞系和MARC-145细胞中的病毒滴度并绘制多步生长曲线以比较其差异。CCK-8试验结果表明,过表达PRRSVM蛋白对MARC-145细胞活力无显著影响;RT-qPCR、Westernblot和IFA等试验结果表明,MARC-145ORF6细胞系能够表达PRRSV的M蛋白且在传代过程中稳定。此外,稳定表达PRRSVM蛋白显著下调了细胞系的Ⅰ型干扰素及其相关调节基因;多步生长曲线表明,MARC-145ORF6细胞系促进PRRSV增殖,提高其病毒滴度。综上,本研究构建了可以稳定表达PRRSVM蛋白的MARC-145ORF6细胞系,发现其Ⅰ型干扰素水平显著下调且促进PRRSV复制。本研究构建的MARC-145ORF6细胞系将为M蛋白功能的深入研究提供重要生物材料。展开更多
Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (E...Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (ESCC) for a long term. tubeimoside I (TBMS1) is the main component of TBM, exhibiting great anticancer potential. In this study, we investigated the mechanism of TBMS1 cytotoxic effect on EC109 cells. Methods: Comparative nuclear proteomic approach was applied in the current study and we identified several altered protein spots. Further biochemical studies were carried out to detect the mitochondrial membrane potential, cell cycle and corresponding proteins' expression and location. Results: Subcellular proteomic study in the nucleus from EC109 cells revealed that altered proteins were associated with mitochondrial function and cell proliferation. Further biochemical studies showed that TBMSl-induced molecular events were related to mitochondria-induced intrinsic apoptosis and P21-cyclin B 1/cdc2 complex-related G2/M cell cycle arrest. Conclusions: Considering the conventional application of TBM in esophageal cancer, TBMS1 therefore may have a great potential as a chemotherapeutic drug candidate for ESCC.展开更多
Hepatitis C virus(HCV) is the main cause of chronic liver disease and cirrhosis in Western countries. Over time, the majority of cirrhotic patients develop hepatocellular carcinoma(HCC), one of the most common fatal c...Hepatitis C virus(HCV) is the main cause of chronic liver disease and cirrhosis in Western countries. Over time, the majority of cirrhotic patients develop hepatocellular carcinoma(HCC), one of the most common fatal cancers worldwide- fourth for incidence rate. A high public health priority need is the development of biomarkers to screen for liver disease progression and for early diagnosis of HCC development, particularly in the high risk population represented by HCV-positive patients with cirrhosis. Several studies have shown that serological determination of a novel biomarker, squamous cell carcinoma antigen-immunoglobulins M(SCCA-Ig M), might be useful to identify patients with progressive liver disease. In the initial part of this review we summarize the main clinical studies that have investigated this new circulating biomarker on HCV-infected patients, providing evidence that in chronic hepatitis C SCCA-Ig M may be used to monitor progression of liver disease, and also to assess the virological response to antiviral treatment. In the last part of this review we address other, not less important, clinical applications of this biomarker in hepatology.展开更多
Microfold (M) cells are a kind of intestinal epithelial cell in the follicle-associated epithelium (FAE) of Peyer’s patches. They can transport antigens and microorganisms to lymphoid tissues. Bovine spongiform encep...Microfold (M) cells are a kind of intestinal epithelial cell in the follicle-associated epithelium (FAE) of Peyer’s patches. They can transport antigens and microorganisms to lymphoid tissues. Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disorder in cattle. It is linked to variant Creutzfeldt-Jakob disease in humans. Although it is thought that M cells transport the BSE agent, the exact mechanism by which it crosses the intestinal barrier is not clear. We have bovine intestinal epithelial cell line (BIE cells), which can differentiate into the M cell type in vitro after stimulation, and which is able to transport the BSE agent. We show here that M cells are able to incorporate large numbers of PrP coated magnetic particles into intracellular vesicles, which we collected. The results of 2-DE show a specific protein associated with the PrP-coated particles, compared with non-coated particles. This protein was identified as aldolase A, a glycolytic pathway enzyme, using LC-MS/MS analysis. Aldolase A was synthesized and secreted by BIE cells, and increased during M cell differentiation. In the villi of the bovine intestine, aldolase A was detected on the surface of the epithelium and in the mucus droplet of goblet cells. In the FAE of bovine jejunal and ileal Peyer’s patches, aldolase A was localized on the surface and the apical part of the M cells. The binding of rbPrP to aldolase A was clearly detected and inhibited by pre-treatment of anti-aldolase A antibody. Aldolase A was co-stained with incorporated PrPSc in M-BIE cells. These results suggest that bovine M cells and goblet cells synthesize aldolase A, and that aldolase A may have the ability to bind PrP and associate with PrP in cellular vesicles. Therefore, aldolase A-positive M cells may play a key role in the invasion of BSE into the body.展开更多
文摘为了给深入研究猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndromevirus,PRRSV)ORF6基因编码的M蛋白的生物学功能提供重要试验材料,本研究首先利用慢病毒包装系统构建了过表达PRRSVORF6基因的重组慢病毒质粒,将该质粒连同辅助质粒共同转染至HEK293T细胞获得重组慢病毒;之后将重组慢病毒感染MARC-145细胞,利用嘌呤霉素结合有限稀释法进行筛选,连续筛选3轮后建立了稳定表达PRRSVM蛋白的MARC-145ORF6细胞系;并使用CCK-8试验评估过表达PRRSVM蛋白对MARC-145细胞生长的影响。利用RT-PCR、蛋白免疫印迹(Westernblot)和间接免疫荧光(IFA)评估MARC-145ORF6细胞系的传代稳定性并鉴定M蛋白的亚细胞定位,进一步利用RT-qPCR评估过表达M蛋白对MARC-145细胞的干扰素及相关调节基因的影响;此外,还测定了PRRSV在MARC-145ORF6细胞系、MARC-145Flag细胞系和MARC-145细胞中的病毒滴度并绘制多步生长曲线以比较其差异。CCK-8试验结果表明,过表达PRRSVM蛋白对MARC-145细胞活力无显著影响;RT-qPCR、Westernblot和IFA等试验结果表明,MARC-145ORF6细胞系能够表达PRRSV的M蛋白且在传代过程中稳定。此外,稳定表达PRRSVM蛋白显著下调了细胞系的Ⅰ型干扰素及其相关调节基因;多步生长曲线表明,MARC-145ORF6细胞系促进PRRSV增殖,提高其病毒滴度。综上,本研究构建了可以稳定表达PRRSVM蛋白的MARC-145ORF6细胞系,发现其Ⅰ型干扰素水平显著下调且促进PRRSV复制。本研究构建的MARC-145ORF6细胞系将为M蛋白功能的深入研究提供重要生物材料。
基金supported by the Natural Science Foundation of Fujian Province of China (No. 2011J05098)the Fundamental Research Funds for the Central Universities (No. 2011121055)+1 种基金Grants from the National Natural Science Foundation of China (No. 81202956)SRF for ROCS, SEM [2011]1568 and NSFC (No. 81102332)
文摘Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (ESCC) for a long term. tubeimoside I (TBMS1) is the main component of TBM, exhibiting great anticancer potential. In this study, we investigated the mechanism of TBMS1 cytotoxic effect on EC109 cells. Methods: Comparative nuclear proteomic approach was applied in the current study and we identified several altered protein spots. Further biochemical studies were carried out to detect the mitochondrial membrane potential, cell cycle and corresponding proteins' expression and location. Results: Subcellular proteomic study in the nucleus from EC109 cells revealed that altered proteins were associated with mitochondrial function and cell proliferation. Further biochemical studies showed that TBMSl-induced molecular events were related to mitochondria-induced intrinsic apoptosis and P21-cyclin B 1/cdc2 complex-related G2/M cell cycle arrest. Conclusions: Considering the conventional application of TBM in esophageal cancer, TBMS1 therefore may have a great potential as a chemotherapeutic drug candidate for ESCC.
文摘Hepatitis C virus(HCV) is the main cause of chronic liver disease and cirrhosis in Western countries. Over time, the majority of cirrhotic patients develop hepatocellular carcinoma(HCC), one of the most common fatal cancers worldwide- fourth for incidence rate. A high public health priority need is the development of biomarkers to screen for liver disease progression and for early diagnosis of HCC development, particularly in the high risk population represented by HCV-positive patients with cirrhosis. Several studies have shown that serological determination of a novel biomarker, squamous cell carcinoma antigen-immunoglobulins M(SCCA-Ig M), might be useful to identify patients with progressive liver disease. In the initial part of this review we summarize the main clinical studies that have investigated this new circulating biomarker on HCV-infected patients, providing evidence that in chronic hepatitis C SCCA-Ig M may be used to monitor progression of liver disease, and also to assess the virological response to antiviral treatment. In the last part of this review we address other, not less important, clinical applications of this biomarker in hepatology.
文摘Microfold (M) cells are a kind of intestinal epithelial cell in the follicle-associated epithelium (FAE) of Peyer’s patches. They can transport antigens and microorganisms to lymphoid tissues. Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disorder in cattle. It is linked to variant Creutzfeldt-Jakob disease in humans. Although it is thought that M cells transport the BSE agent, the exact mechanism by which it crosses the intestinal barrier is not clear. We have bovine intestinal epithelial cell line (BIE cells), which can differentiate into the M cell type in vitro after stimulation, and which is able to transport the BSE agent. We show here that M cells are able to incorporate large numbers of PrP coated magnetic particles into intracellular vesicles, which we collected. The results of 2-DE show a specific protein associated with the PrP-coated particles, compared with non-coated particles. This protein was identified as aldolase A, a glycolytic pathway enzyme, using LC-MS/MS analysis. Aldolase A was synthesized and secreted by BIE cells, and increased during M cell differentiation. In the villi of the bovine intestine, aldolase A was detected on the surface of the epithelium and in the mucus droplet of goblet cells. In the FAE of bovine jejunal and ileal Peyer’s patches, aldolase A was localized on the surface and the apical part of the M cells. The binding of rbPrP to aldolase A was clearly detected and inhibited by pre-treatment of anti-aldolase A antibody. Aldolase A was co-stained with incorporated PrPSc in M-BIE cells. These results suggest that bovine M cells and goblet cells synthesize aldolase A, and that aldolase A may have the ability to bind PrP and associate with PrP in cellular vesicles. Therefore, aldolase A-positive M cells may play a key role in the invasion of BSE into the body.