The stochastic response of a noisy system with non-negative restoring force is investigated. The generalized cell mapping (GCM) method compute the transient and stationary probability density functions (PDFs) real...The stochastic response of a noisy system with non-negative restoring force is investigated. The generalized cell mapping (GCM) method compute the transient and stationary probability density functions (PDFs) real-power is used to Combined with the global properties of the noise-free system, the evolutionary process of the tran- sient PDFs is revealed. The results show that stochastic P-bifurcation occurs when the system parameter varies in the response analysis and the stationary PDF evolves from bimodal to unimodal along the unstable manifold during the bifurcation.展开更多
It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specificat...It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specifications tend to be conflicting to each other to make the control design even more challenging. This paper presents a cell mapping method for multi-objective optimal feedback control design in time domain for a nonlinear Duffing system with time delay. We first review the multi-objective optimization problem and its formulation for control design. We then introduce the cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of the PID control are presented to show the features of the multi-objective optimal design. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1306306]展开更多
A crisis in a Duffing-van del Pol system with fuzzy uncertainties is studied by means of the fuzzy generalised cell mapping (FGCM) method. A crisis happens when two fuzzy attractors collide simultaneously with a fuz...A crisis in a Duffing-van del Pol system with fuzzy uncertainties is studied by means of the fuzzy generalised cell mapping (FGCM) method. A crisis happens when two fuzzy attractors collide simultaneously with a fuzzy saddle on the basin boundary as the intensity of fuzzy noise reaches a critical point. The two fuzzy attractors merge discontinuously to form one large fuzzy attractor after a crisis. A fuzzy attractor is characterized by its global topology and membership function. A fuzzy saddle with a complicated pattern of several disjoint segments is observed in phase space. It leads to a discontinuous merging crisis of fuzzy attractors. We illustrate this crisis event by considering a fixed point under additive and multiplicative fuzzy noise. Such a crisis is fuzzy noise-induced effects which cannot be seen in deterministic systems.展开更多
The generalized cell mapping(GCM) method is used to obtain the stationary response of a single-degree-of-freedom.Vibro-impact system under a colored noise excitation. In order to show the advantage of the GCM method, ...The generalized cell mapping(GCM) method is used to obtain the stationary response of a single-degree-of-freedom.Vibro-impact system under a colored noise excitation. In order to show the advantage of the GCM method, the stochastic averaging method is also presented. Both of the two methods are tested through concrete examples and verified by the direct numerical simulation. It is shown that the GCM method can well predict the stationary response of this noise-perturbed system no matter whether the noise is wide-band or narrow-band, while the stochastic averaging method is valid only for the wide-band noise.展开更多
Stochastic bifurcations of the SD (smooth and discontinuous) oscillator with additive and/or multiplicative bounded noises are studied by the generalized cell mapping method using digraph analysis algorithm. From th...Stochastic bifurcations of the SD (smooth and discontinuous) oscillator with additive and/or multiplicative bounded noises are studied by the generalized cell mapping method using digraph analysis algorithm. From the global viewpoint, stochastic bifur- cation can be described as a sudden change in shape and size of a random attractor as the system parameter valies. The evolu- tionary process of stochastic bifurcation in the SD oscillator is shown in detail. Meanwhile, we show the phenomenon that un- der stochastic excitation the shape and size of random attractor and random saddle change along with the direction of unstable manifold. A plane stochastic bifurcation diagram is included.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11172233,11302169,11302170,and 11472212)the Fundamental Research Funds for the Central Universities(No.3102014JCQ01079)
文摘The stochastic response of a noisy system with non-negative restoring force is investigated. The generalized cell mapping (GCM) method compute the transient and stationary probability density functions (PDFs) real-power is used to Combined with the global properties of the noise-free system, the evolutionary process of the tran- sient PDFs is revealed. The results show that stochastic P-bifurcation occurs when the system parameter varies in the response analysis and the stationary PDF evolves from bimodal to unimodal along the unstable manifold during the bifurcation.
基金supported by the UC MEXUSCONACyT("Cell-to-cell Mapping for Global Multi-objective Optimization")the National Natural Science Foundation of China(11172197)+1 种基金the Natural Science Foundation of Tianjin through a key-project grantsupport from CONACyT through a scholarship to pursue graduate studies at the Computer Science Department of CINVESTAV-IPN
文摘It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specifications tend to be conflicting to each other to make the control design even more challenging. This paper presents a cell mapping method for multi-objective optimal feedback control design in time domain for a nonlinear Duffing system with time delay. We first review the multi-objective optimization problem and its formulation for control design. We then introduce the cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of the PID control are presented to show the features of the multi-objective optimal design. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1306306]
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10772140 and 10872155)
文摘A crisis in a Duffing-van del Pol system with fuzzy uncertainties is studied by means of the fuzzy generalised cell mapping (FGCM) method. A crisis happens when two fuzzy attractors collide simultaneously with a fuzzy saddle on the basin boundary as the intensity of fuzzy noise reaches a critical point. The two fuzzy attractors merge discontinuously to form one large fuzzy attractor after a crisis. A fuzzy attractor is characterized by its global topology and membership function. A fuzzy saddle with a complicated pattern of several disjoint segments is observed in phase space. It leads to a discontinuous merging crisis of fuzzy attractors. We illustrate this crisis event by considering a fixed point under additive and multiplicative fuzzy noise. Such a crisis is fuzzy noise-induced effects which cannot be seen in deterministic systems.
基金supported by the National Natural Science Foundation of China (Grant No. 11772149)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,China (Grant No. MCMS-I-19G01)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD),China。
文摘The generalized cell mapping(GCM) method is used to obtain the stationary response of a single-degree-of-freedom.Vibro-impact system under a colored noise excitation. In order to show the advantage of the GCM method, the stochastic averaging method is also presented. Both of the two methods are tested through concrete examples and verified by the direct numerical simulation. It is shown that the GCM method can well predict the stationary response of this noise-perturbed system no matter whether the noise is wide-band or narrow-band, while the stochastic averaging method is valid only for the wide-band noise.
基金supported by the National Natural Science Foundation of China (Grant Nos.10932009 and 11172233)the Natural Science Foundation of Shaanxi Province (Grant No.2012JQ1004)the Northwestern Polytechnical University Foundation for Fundamental Research (Grant Nos.JC201266 and JC20110228)
文摘Stochastic bifurcations of the SD (smooth and discontinuous) oscillator with additive and/or multiplicative bounded noises are studied by the generalized cell mapping method using digraph analysis algorithm. From the global viewpoint, stochastic bifur- cation can be described as a sudden change in shape and size of a random attractor as the system parameter valies. The evolu- tionary process of stochastic bifurcation in the SD oscillator is shown in detail. Meanwhile, we show the phenomenon that un- der stochastic excitation the shape and size of random attractor and random saddle change along with the direction of unstable manifold. A plane stochastic bifurcation diagram is included.